PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the steam flow field in shell and tube heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ε, RNG k-ε, Wilcox k-ω, Chen-Kim k-ε, and Lam-Bremhorst k-ε. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.
Rocznik
Strony
107--120
Opis fizyczny
Bibliogr. 18 poz., rys., wz.
Twórcy
  • Poznań University of Technology, Chair of Thermal Engineering, M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
  • Poznań University of Technology, Chair of Thermal Engineering, M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] Bartoszewicz J.: Heat exchangers PWC 630 – 2800 – 16/25V – B. Report of Power Station Technical Service, Poznań 2001 (in Polish).
  • [2] Chen Y.S., Kim S.W.: Computation of turbulent flows using an extended k-ε turbulence closure model. NASA CR-179204, 1987.
  • [3] Guo Z.Y., Liu X.B., Tao W.Q., Shah R.K.: Effectiveness-thermal resistance method for heat exchanger design and analysis. Int. J. Heat Mass Transfer 53(2010), 13-14, 2877–2884.
  • [4] Khaled M., Harambat F., Peerhossini H.: Analytical and empirical determination of thermal performance of louvered heat exchanger – Effects of air flow statistics. Int. J. Heat Mass Transfer 54(2011), 1-3, 356–365.
  • [5] Kolmogorov A.N.: Equations of turbulent motion of incompressible fluid . Izv. Akad. Nauk SSR, Ser. Phys. 6(1942), 1/2, 56.
  • [6] Lam C.K.G., Bremhorst K.: A modified form of the k-ε model for predicting wall turbulence. Trans. ASME J. Fluids Eng. 103(1981), 456–460.
  • [7] Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comp. Mech. Appl. Mech. Eng. 3(1974), 269-289.
  • [8] Launder B.E., Spalding D.B., Rodi W.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68(1975), 537.
  • [9] Liu Y.C., Wongwieses S., Wang Q.W.: Airside performance of fin-and-tube heat exchangers in dehumidifying conditions – data with larger diameter. Int. J. Heat Mass Transfer 53(2010), 7-8, 1603–1608.
  • [10] Patel V.C., Rodi W., Scheurer G.,: Turbulence models for near-wall and low-Reynolds-number flows: A review. AIAA J. 23(1984), 9, 1308–1319.
  • [11] Rosten H.I., Spalding D.B.: The PHOENICS beginners guides. CHAM Report, No. TR100, CHAM Ltd., Wimbledon 1985.
  • [12] Spalding D.B.: Mathematical models of turbulent transport processes. HTS/79/2, Imperial Collage, Mech. Eng. Dept., London 1979.
  • [13] Tang L.H., Zeng M., Wang Q.W.: Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns. Exp. Therm. Fluid Sci. 33(2009), 818–827.
  • [14] Wang C.C., Liaw J.S., Yang B.C.: Airside performance of herringbone wavy fin-andtube heat exchangers – data with larger diameter tube. Int. J. Heat Mass Transfer 54(2011), 5-6, 1024–1029.
  • [15] Wilcox D. C.: Reassessment of the scale determining equation for advanced turbulence models. AIAA J. 26(1988), 11, 1299–1310.
  • [16] Xie G., Wang Q., Sunden B.: Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows. Appl. Therm. Eng.29(2009), 1–16.
  • [17] Yakhot V., Orszag S.A.: RNG analysis of turbulence. J. Sci. Comput. 1(1986), 3–51.
  • [18] Yakhot V., Smith S.A.: The renormalization group, the eps-expansion and derivation of turbulence models. J. Sci. Comput. 7(1992), 35–61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0935981-9472-4953-af2d-b75bf517a07a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.