PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the analysis of a mathematical model of CAR-T cell therapy for glioblastoma: Insights from a mathematical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chimeric antigen receptor T (CAR-T) cell therapy has been proven to be successful against different leukaemias and lymphomas. Its success has led, in recent years, to its use being tested for different solid tumours, including glioblastoma, a type of primary brain tumour, characterised by aggressiveness and recurrence. This paper presents an analytical study of a mathematical model describing the competition of CAR-T and glioblastoma tumour cells, taking into account their immunosuppressive capacity. The model is formulated in a general way, and its basic properties are investigated. However, most of the analysis considers the model with exponential tumour growth, assuming this growth type for simplicity. The existence and stability of steady states are studied, and the subsequent focus is on two different types of treatment: constant and periodic. Finally, protocols for CAR-T cell therapy of glioblastoma are numerically derived; these are aimed at preventing the tumour from reaching a critical size and at prolonging the patients’ survival time as much as possible. The analytical and numerical results provide theoretical support for the treatment of glioblastoma using CAR-T cells.
Rocznik
Strony
379--394
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
  • Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
  • Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
  • Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
  • Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
Bibliografia
  • [1] Anderson, K., Stromnes, I. and Greenberg, P. (2017). Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies, Cancer Cell 31(3): 311-325.
  • [2] Bodnar, M. and Piotrowska, M.J. (2016). Stability analysis of the family of tumour angiogenesis models with distributed time delays, Communications in Nonlinear Science and Numerical Simulation 31(1): 124-142.
  • [3] Bodnar, M., Piotrowska, M.J. and Bogdańska, M.U. (2019). Mathematical analysis of a generalised model of chemotherapy for low grade gliomas, Discrete and Continuous Dynamical Systems B 24(5): 2149-2167, DOI: 10.3934/dcdsb.2019088.
  • [4] Bodzioch, M., Bajger, P. and Foryś, U. (2021). Angiogenesis and chemotherapy resistance: Optimizing chemotherapy scheduling using mathematical modeling, Journal of Cancer Research and Clinical Oncology 147(8): 2281-2299, DOI: 10.1007/s00432-021-03657-9.
  • [5] Brown, C.E., Alizadeh, D., Starr, R., Weng, L., Wagner, J.R., Naranjo, A., Ostberg, J.R., Blanchard, M.S., Kilpatrick, J., Simpson, J., Kurien, A., Priceman, S.J., Wang, X., Harshbarger, T.L., D‘Apuzzo, M., Ressler, J.A., Jensen, M.C., Barish, M.E., Chen, M., Portnow, J., Forman, S.J. and Badie, B. (2016). Regression of glioblastoma after chimeric antigen receptor T-cell therapy, New England Journal of Medicine 375(26): 2561-2569, DOI: 10.1056/NEJMoa1610497.
  • [6] Castellarin, M., Watanabe, K., June, C.H., Kloss, C.C. and Posey, A.D. (2018). Driving cars to the clinic for solid tumors, Gene Therapy 25(3): 165-175, DOI: 10.1038/s41434-018-0007-x.
  • [7] Colli, P., Gomez, H., Lorenzo, G., Marinoschi, G., Reali, A. and Rocca, E. (2021). Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Mathematical Models and Methods in Applied Sciences 31(07): 1419-1468, DOI: 10.1142/S0218202521500299.
  • [8] D’Agostino, M. and Raje, N. (2020). Anti-BCMA CAR T-cell therapy in multiple myeloma: Can we do better?, Leukemia 34(1): 21-34, DOI: 10.1038/s41375-019-0669-4.
  • [9] de Pillis, L., Gu, W., Fister, K., Head, T., Maples, K., Murugan, A., Neal, T. and Yoshida, K. (2007). Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences 209(1): 292-315,
  • [10] D’Errico, G., Machado, H.L. and Sainz Jr., B. (2017). A current perspective on cancer immune therapy: Step-by-step approach to constructing the magic bullet, Clinical and Translational Medicine 6(1): e3, DOI: abs/10.1186/s40169-016-0130-5.
  • [11] Feins, S., Kong, W., Williams, E.F., Milone, M.C. and Fraietta, J.A. (2019). An introduction to chimeric antigen receptor (car) T-cell immunotherapy for human cancer, American Journal of Hematology 94(S1): S3-S9, DOI: 10.1002/ajh.25418.
  • [12] Foryś, U. and Marciniak-Czochra, A.K. (2003). Logistic equations in tumour growth modelling, International Journal of Applied Mathematics and Computer Science 13(3): 317-325.
  • [13] Garcke, H., Lam, K.-F. and Rocca, E. (2018). Optimal control of treatment time in a diffuse interface model of tumor growth, Applied Mathematics & Optimization 78: 495-544, DOI: 10.1007/s00245-017-9414-4.
  • [14] Ghorashian, S., Kramer, A., Onuoha, S., Wright, G., Bartram, J., Richardson, R., Albon, S.J., Casanovas-Company, J., Castro, F., Popova, B., Villanueva, K., Yeung, J., Vetharoy, W., Guvenel, A., Wawrzyniecka, P.A., Mekkaoui, L., Cheung, G.W.-K., Pinner, D., Chu, J., Lucchini, G., Silva, J., Ciocarlie, O., Lazareva, A., Inglott, S., Gilmour, K.C., Ahsan, G., Ferrari, M., Manzoor, S., Champion, K., Brooks, T., Lopes, A., Hackshaw, A., Farzaneh, F., Chiesa, R., Rao, K., Bonney, D., Samarasinghe, S., Goulden, N., Vora, A., Veys, P., Hough, R., Wynn, R., Pule, M.A. and Amrolia, P.J. (2019). Enhanced car T cell expansion and prolonged persistence in pediatric patients with all treated with a low-affinity cd19 car, Nature Medicine 25(5): 1408-1414.
  • [15] Hege, K.M., Bergsland, E.K., Fisher, G.A., Nemunaitis, J.J., Warren, R.S., McArthur, J.G., Lin, A.A., Schlom, J., June, C.H. and Sherwin, S.A. (2017). Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer, Journal for ImmunoTherapy of Cancer 5(1): 22, DOI: 10.1186/s40425-017-0222-9.
  • [16] Koury, J., Lucero, M., Cato, C., Chang, L., Geiger, J., Henry, D., Hernandez, J., Hung, F., Kaur, P., Teskey, G. and Tran, A. (2018). Immunotherapies: Exploiting the immune system for cancer treatment, Journal of Immunology Research 2018: 9585614, DOI: 10.1155/2018/9585614.
  • [17] León-Triana, O., Perez-Martinez, A., Ramirez-Orellana, M. and Perez-Garcia, V. (2021). Dual-target CAR-TS with on- and off-tumour activity may override immune suppression in solid cancers: A mathematical proof of concept, Cancers 13(4): 703, DOI: 10.3390/cancers13040703.
  • [18] Lima, E.A., Wyde, R., Sorace, A.G. and Yankeelov, T.E. (2022). Optimizing delivery of combination targeted and chemotherapy in a murine model of HER2+ breast cancer, Cancer Research 82(12 Supplement): 5050-5050, DOI: 10.1158/1538-7445.AM2022-5050.
  • [19] Locke, F.L., Ghobadi, A., Jacobson, C.A., Miklos, D.B., Lekakis, L.J., Oluwole, O.O., Lin, Y., Braunschweig, I., Hill, B.T., Timmerman, J.M., Deol, A., Reagan, P.M., Stiff, P., Flinn, I.W., Farooq, U., Goy, A., McSweeney, P.A., Munoz, J., Siddiqi, T., Chavez, J.C., Herrera, A.F., Bartlett, N.L., Wiezorek, J.S., Navale, L., Xue, A., Jiang, Y., Bot, A., Rossi, J.M., Kim, J.J., Go, W.Y. and Neelapu, S.S. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial, The Lancet Oncology 20(1): 31-42.
  • [20] Mahlbacher, G.E., Reihmer, K.C. and Frieboes, H.B. (2019). Mathematical modeling of tumor-immune cell interactions, Journal of Theoretical Biology 469: 47-60, DOI: 10.1016/j.jtbi.2019.03.002.
  • [21] Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M.R., Stefanski, H.E., Myers, G.D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K.L., Martin, P.L., Nemecek, E.R., Yanik, G.A., Peters, C., Baruchel, A., Boissel, N., Mechinaud, F., Balduzzi, A., Krueger, J., June, C. H., Levine, B.L., Wood, P., Taran, T., Leung, M., Mueller, K.T., Zhang, Y., Sen, K., Lebwohl, D., Pulsipher, M.A. and Grupp, S.A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia, New England Journal of Medicine 378(5): 439-448, DOI: 10.1056/NEJMoa1709866.
  • [22] Miliotou, N.A. and Papadopoulou, C.L. (2018). CAR T-cell therapy: A new era in cancer immunotherapy, Current Pharmaceutical Biotechnology 19(1): 5-18.
  • [23] Mostolizadeh, R., Afsharnezhad, Z. and Marciniak-Czochra, A. (2018). Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine, Numerical Algebra, Control and Optimization 8(1): 63-80.
  • [24] Pérez-García, V., Calvo, G., Bosque, J., León-Triana, O., Jiménez SĂnchez, J., Pérez Beteta, J., Belmonte-Beitia, J., Valiente, M., Zhu, L., García Gómez, P., Sánchez-Gómez, P.,Miguel, E., Hortiguela, R., Azimzade, Y., Molina-García, D., Martínez-Rubio, A., Rojas, A., Ortiz de Mendivil, A., Vallette, F. and Vicente, A. (2020). Universal scaling laws rule explosive growth in human cancers, Nature Physics 16(12): 1-6, DOI: 10.1038/s41567-020-0978-6.
  • [25] Pérez-García, V.M. and Pérez-Romasanta, L.A. (2015). Extreme protraction for low-grade gliomas: Theoretical proof of concept of a novel therapeutical strategy, Mathematical Medicine and Biology: A Journal of the IMA 33(3): 253-271, DOI: 10.1093/imammb/dqv017.
  • [26] Pozzi, G., Grammatica, B., Chaabane, L., Catucci, M., Mondino, A., Zunino, P. and Ciarletta, P. (2022). T cell therapy against cancer: A predictive diffuse-interface mathematical model informed by pre-clinical studies, Journal of Theoretical Biology 547: 111172, DOI: 10.1016/j.jtbi.2022.111172.
  • [27] Radunskaya, A., Kim, R. and Woods, T. (2018). Mathematical modeling of tumor immune interactions: A closer look at the role of a PD-l1 inhibitor in cancer immunotherapy, Spora: A Journal of Biomathematics 4: 25-41, DOI: 10.30707/SPORA4.1Radunskaya.
  • [28] Sahoo, P., Yang, X., Abler, D., Maestrini, D., Adhikarla, V., Frankhouser, D., Cho, H., Machuca, V., Wang, D., Barish, M., Gutova, M., Branciamore, S., Brown, C.E. and Rockne, R.C. (2020). Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data, Journal of The Royal Society Interface 17(162): 20190734, DOI: 10.1098/rsif.2019.0734.
  • [29] Sancho-Araiz, A., Mangas-Sanjuan, V. and Trocóniz, I.F. (2021). The role of mathematical models in immuno-oncology: Challenges and future perspectives, Pharmaceutics 13(7): 1016.
  • [30] Schuster, S.J., Bishop, M.R., Tam, C.S., Waller, E.K., Borchmann, P., McGuirk, J.P., Jäger, U., Jaglowski, S., Andreadis, C., Westin, J.R., Fleury, I., Bachanova, V., Foley, S.R., Ho, P.J.,Mielke, S.,Magenau, J.M., Holte, H., Pantano, S., Pacaud, L.B., Awasthi, R., Chu, J., Anak, O., Salles, G. and Maziarz, R.T. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma, New England Journal of Medicine 380(1): 45-56, DOI: 10.1056/NEJMoa1804980.
  • [31] Shah, N.N. and Fry, T.J. (2019). Mechanisms of resistance to CAR T cell therapy, Nature Reviews Clinical Oncology 16(6): 372-385, DOI: 10.1038/s41571-019-0184-6.
  • [32] Stein, A.M., Grupp, S.A., Levine, J.E., Laetsch, T.W., Pulsipher, M.A., Boyer, M.W., August, K.J., Levine, B.L., Tomassian, L., Shah, S., Leung, M., Huang, P.-H., Awasthi, R., Mueller, K.T., Wood, P.A. and June, C.H. (2019). Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells, CPT: Pharmacometrics & Systems Pharmacology 8(5): 285-295, DOI: abs/10.1002/psp4.12388.
  • [33] Stein, S., Zhao, R., Haeno, H., Vivanco, I. and Michor, F. (2018). Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients, PLOS Computational Biology 14(1): 1-24, DOI: 10.1371/journal.pcbi.1005924.
  • [34] Stensjoen, A., Solheim, O., Kvistad, K., Haberg, A., Salvesen, O. and Berntsen, E. (2015). Growth dynamics of untreated glioblastomas in vivo, Neuro-Oncology 17(10): 1402-1411, DOI: 10.1093/neuonc/nov029.
  • [35] Świerniak, A., Ledzewicz, U. and Schättler, H. (2003). Optimal control for a class of compartmental models in cancer chemotherapy, International Journal of Applied Mathematics and Computer Science 13(3): 357-368.
  • [36] Wang, A.X., Ong, X.J., D’Souza, C., Neeson, P.J. and Zhu, J.J. (2023). Combining chemotherapy with CAR-T cell therapy in treating solid tumors, Frontiers in Immunology 14: 1140541, DOI: 10.3389/fimmu.2023.1140541.
  • [37] Yabo, Y.A., Niclou, S.P. and Golebiewska, A. (2021). Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma, Neuro-Oncology 24(5): 669-682, DOI: 10.1093/neuonc/noab269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a09237da-fa05-4576-ad13-1c8c26d87730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.