PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Common Solution of the Energy Dissipation Problem in Shafts Under Time-Dependent Angles of Twist

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ogólne rozwiązanie problemu rozpraszania energii w wałach przy kątach skrętu zależnych od czasu
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the energy dissipation problem in viscoelastic continuously inhomogeneous stepped shafts under time-dependent angles of twist. The shafts analyzed in the paper have circular cross-section. Common solution of the energy dissipation problem is derived. Statically determinate as well as statically indeterminate shafts are considered. The viscoelastic behavior of the shafts is treated by models representing systems of springs and dashpots under time-dependent shear strain. The shafts are continuously inhomogeneous along the radius of the cross-section. Because of this, the shaft properties are continuously distributed along the radius. The common solution for the energy dissipation is obtained by analyzing the stresses and strains in the dashpots of the viscoelastic models (actually, this approach uses the fact that in models with springs and dashpots the energy is dissipated by the dashpots). An example illustrating the application of the common solution is presented. The dissipated energy (DE) is derived also by direct integration in the time domain for verification. The DE in the statically determinate shafts is compared with this in an indeterminate shaft. It is demonstrated that the common solution is applicable also when the shafts are under angles of twist whose number is less that the number of the shaft portions.
Rocznik
Strony
art. no. 23
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
  • Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy, 1 Chr. Smirnensky Blvd., 1046 Sofia, Bulgaria
Bibliografia
  • 1. K. Mladenov, J. Klecherov, S. Lilkova-Markova and V. Rizov, Strength of materials (ABC Tehnika, 2012).
  • 2. P. Kolev and K. Mladenov, Strength of materials (UACEG, 1992).
  • 3. S. Kisliakov, N. Kardzhiev, M. Kishkilov, P. Kolev and V. Drumev, Strength of materials (Tehnika, 1986).
  • 4. A. Blake, Handbook of mechanics, materials, and structures (John Wiley & Sons, 1985).
  • 5. I. Narisawa, Strength of Polymer Materials (Chemistry, 1987).
  • 6. N. Dowling, Mechanical Behavior of Materials (Pearson, 2007).
  • 7. V. I. Rizov, “Energy Dissipation in Viscoelastic Multilayered Inhomogeneous Beam Structures: An Analytical Study”, Materials Science Forum, 1046, pp. 39-44 (2021).
  • 8. S.K. Bohidar, R. Sharma and P.R. Mishra, “Functionally graded materials: A critical review”, International Journal of Research, 1, pp. 289-301 (2014).
  • 9. M.M. Gasik, “Functionally graded materials: bulk processing techniques”, International Journal of Materials and Product Technology, 39, pp. 20-29 (2010).
  • 10. Minoo Naebe and Kamyar Shirvanimoghaddam, “Functionally graded materials: A review of fabrication and properties”, Applied materials today, 5, pp. 223-245 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a08fb13f-0b68-41da-aac1-b8c8c84098c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.