PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ventilation heat loss in a multifamily building under varying air density

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standards related to calculation methods used in building energy performance simulation tools usually impose constant volumetric heat capacity of air. However, this simplification may result in errors if the actual conditions differ from the assumptions made. The paper presents the problem of dry air density and specific heat capacity variation and their influence on calculated energy use for space heating in a multifamily building. The monthly calculation method of PN-EN ISO 13790 was used. Simulations were performed in five cities, each in one climatic zone according to PN-EN 12831. Variation of the air density caused by air temperature and elevation resulted in differences in calculated heating demand from -4.5% to 4.5% in relation to that at constant volumetric heat capacity assumed in PN-EN ISO 13790.
Rocznik
Strony
97--102
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. H. Jędrzejuk, O. Dybiński. (2015). The influence of a heating system control program and thermal mass of external walls on the internal comfort in the Polish climate. Energy Procedia, Vol. 78, pp. 1087-1092. doi: 10.1016/j.egypro.2015.11.058
  • 2. Michalak P. (2019). Modelling of global solar irradiance on sloped surfaces in climatic conditions of Kraków. In: New Trends in Production Engineering, Vol. 2, No. 1, pp. 505-514. doi: https://doi.org/10.2478/ntpe-2019-0054
  • 3. Firląg S., Piasecki M. (2018). NZEB Renovation Definition in a Heating Dominated Climate: Case Study of Poland. Applied Sciences, Vol. 8, No. 9, 1605. doi:10.3390/app8091605
  • 4. Krawczyk D.A. (2016). Analysis of Energy Consumption for Heating in a Residential House in Poland. Energy Procedia, Vol. 95, pp. 216-222. https://doi.org/10.1016/j.egypro.2016.09.053
  • 5. Sikora M., Siwek K. (2018). Energy audit of the residential building. Journal of Mechanical and Energy Engineering, Vol. 2, No. 4, pp. 317-328. https://doi.org/10.30464/jmee.2018.2.4.317
  • 6. Witkowska A., Krawczyk D.A., Rodero A. (2019). Investment Costs of Heating in Poland and Spain - A Case Study. Proceedings, Vol. 16, No. 1, 40. doi: 10.3390/proceedings2019016040
  • 7. Pieczara J. (2016). Reasons for the growing popularity of energy efficient buildings in Poland. Infrastructure and Ecology of Rural Areas, No. IV/1/2016, pp. 1195-1207. https://doi.org/10.14597/infraeco.2016.4.1.087
  • 8. Deja B.M., Tyburski J. (2015). Selected aspects of designing and realization of low energy single-family houses according to the NF15 and NF40 standards. Technical Sciences, Vol. 18, No. 2, pp. 103-114. http://uwm.edu.pl/wnt/technicalsc/tech_18_2/deja.pdf
  • 9. Miszczuk A. (2017). Influence of air tightness of the building on its energy-efficiency in single-family buildings in Poland. MATEC Web of Conferences, Vol.117, Art. No. 00120. DOI:10.1051/matecconf/20171170012
  • 10. PN-EN ISO 13790:2009 (2009): Energy performance of buildings. Calculation of energy use for space heating and cooling. The Polish Committee for Standardization
  • 11. Vestfálová M., Šafařík P. (2018). Determination of the applicability limits of the ideal gas model for thecalculation of moist air properties. EPJ Web Conferences, Vol. 180, Art. No. 02115. https://doi.org/10.1051/epjconf/201818002115
  • 12. Compendium of Chemical Terminology. IUPAC. https://doi.org/10.1351/goldbook.G02579
  • 13. Picard A., Davis R.S., Glaser M., Fujii K. (2008). Revised formula for the density of moist air (CIPM-2007). Metrologia, Vol. 45, No. 2 pp. 149-155. doi:10.1088/0026-1394/45/2/004
  • 14. Mohr P.J., Newell D.B., Taylor B.N. (2016). CODATA Recommended Values of the Fundamental Physical Constants: 2014. Journal of Physical and Chemical Reference Data, Vol. 45, No. 4, Art. No. 043102. DOI: 10.1063/1.4954402
  • 15. Berberan-Santos M.N., Bodunov E.N., Pogliani L. (1997). On the barometric formula. American Journal of Physics, Vol. 65, No. 4, pp. 404-412. https://doi.org/10.1119/1.18555
  • 16. Andrews D.G. (2000). An Introduction to AtmosphericP hysics. Cambridge. Cambridge University Press.
  • 17. Kind M., Martin H. (Ed.). (2010). VDI Heat Atlas. Springer-Verlag Berlin Heidelberg.
  • 18. PN-EN ISO 52016-1:2017 (2017): Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures. The Polish Committee for Standardization
  • 19. van Dijk D. (2018). EPB standards: Why choose hourly calculation procedures? REHVA Journal, No. 2, pp. 6-12. https://www.rehva.eu/rehva-journal/chapter/epb-standards-why-choose-hourly-calculation-procedures
  • 20. Staszczuk, A. (2012). Comparison of the calculationresults of heat exchange between a single-family building and the ground obtained with the quasi-stationary and 3-d transient models. Part 1: continuous heating mode. Civil and Environmental Engineering Reports, Vol. 1, No. 8, pp. 77-87. https://ceer.com.pl/resources/html/article/details?id=167780
  • 21. Lausten J. (Ed.). (2019). Implementing the Energy Performance of Buildings Directive (EPBD). Country Reports. https://epbd-ca.eu/wp-content/uploads/2019/09/CA-EPBD-2018-BOOK-VOLUME-I.pdf
  • 22. Grudzińska M., Jakusik E. (2016). Energy performance of buildings in Poland on the basis of different climatic data. Indoor and Built Environment, Vol. 26 No. 4, pp. 551-566. https://doi.org/10.1177/1420326X16631031
  • 23. Krużel J., Ziernicka-Wojtaszek A. (2016). Diversity of air temperature in Poland in the years 1971-2010. Journal of Ecological Engineering, Vol. 17, No. 5, pp. 227-231 DOI: 10.12911/22998993/65230
  • 24. Typical meteorological years and statistical climate data for Poland for energy calculations of buildings. [Accessed on 14 February 2020] https://dane.gov.pl/dataset/797,typowe-lata-meteorologiczne-i-statystyczne-dane-klimatyczne-dla-obszaru-polski-do-obliczen-energetycznych-budynkow
  • 25. PN-EN ISO 13786:2008 (2008): Thermal performance ofbuilding components - Dynamic thermal characteristics - Calculation methods. The Polish Committee for Standardization
  • 26. PN-EN 12831:2017 (2017): Energy performance of buildings - Method for calculation of the design heat load. The Polish Committee for Standardization
  • 27. Nowak S. (2009). Management of heat energy consumption in Poland for the purpose of buildings’heating and preparation of useable, hot water. Annales Universitatis Apulensis Series Oeconomica, Vol. 11, No. 2, pp. 895-901
  • 28. Szczerbak K. (2019). Impact of location characteristics on renewable energy production for a group of buildings. E3S Web of Conferences, Vol. 116, Art. No. 00084. https://doi.org/10.1051/e3sconf/201911600084
  • 29. Chwieduk D. (1999). Prospects for low energy buildings in Poland. Renewable Energy, Vol. 16, No. 1-4, pp. 1196-1199. https://doi.org/10.1016/S0960-1481(98)00472-8
  • 30. Basińska M., Koczyk H., Kosmowski A. (2015). Assessment of thermo modernization using the global cost method. Energy Procedia, Vol. 78, pp. 2040-2045. doi: 10.1016/j.egypro.2015.11.204
  • 31. Michalak P. (2019). New standards of PN-EN ISO 52000 family and monthly solar heat gains in residential buildings [in Polish]. Ciepłownictwo Ogrzewnictwo Wentylacja, Vol. 50, No. 2, pp. 50-55 DOI:10.15199/9.2019.2.2
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a088199e-bd05-47b6-af62-7eb1c3ae0c47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.