PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimentation and Prediction of the Wear of a Cutting Tool in Turning Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, the performance of multilayer coated carbide tool was investigated considering the effect of cutting parameters during turning of 34CrMo4 Low alloy steel. It has high strength and creep strength, and good impact tenacity at low temperature. It can work at –110°C to 500°C. And EN 10083-1 34CrMo4 owns high static strength, impact tenacity, fatigue resistance, and hardenability; without overheating tendencies. The objective functions were selected in relation to the parameters of the cutting process: surface roughness criteria. The correlations between the cutting parameters and performance measures, like surface roughness, were established by multiple linear regression models. Highly significant parameters were determined by performing an Analysis of variance (ANOVA). During the experiments flank wear, cutting force and surface roughness value were measured throughout the tool life. The results have been compared with dry and wet-cooled turning. Analysis of variance factors of design and their interactions were studied for their significance. Finally, a model using multiple regression analysis between cutting speed, fee rate and depth of cut with the tool life was established.
Twórcy
autor
  • University of Sidi Bel Abbès, Laboratory of Materials and Reactive Systems – LMSR. BP. 89, City Larbi Ben Mhidi. Sidi Bel Abbes, Algeria
autor
  • University of Sidi Bel Abbès, Laboratory of Materials and Reactive Systems – LMSR. BP. 89, City Larbi Ben Mhidi. Sidi Bel Abbes, Algeria
  • University of Sidi Bel Abbès, Laboratory of Materials and Reactive Systems – LMSR. BP. 89, City Larbi Ben Mhidi. Sidi Bel Abbes, Algeria
  • University of Sidi Bel Abbès, Laboratory of Materials and Reactive Systems – LMSR. BP. 89, City Larbi Ben Mhidi. Sidi Bel Abbes, Algeria
autor
  • University of Sidi Bel Abbès, Laboratory of Materials and Reactive Systems – LMSR. BP. 89, City Larbi Ben Mhidi. Sidi Bel Abbes, Algeria
Bibliografia
  • [1] M. Dogra, V. S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning - A review, J. of Eng. Sci. and Tech. Review 4 (1), 1-13 (2011).
  • [2] Y. Isik, An Experimental Investigation on Effect of Cutting Fluids in Turning with Coated Carbides Tool, J. of Mec. Eng. 56, Start Page - End Page (2010).
  • [3] D. Zhu, X. Zhang, H. Ding, Tool wear characteristics in machining of nickel-based super alloys, Inter. J. of Mach. Tools and Manu. 64 (0), 60-77 (2013).
  • [4] D. Xuan-Truong, Tran Minh-Duc, Effect of cutting condition on tool wear and surface roughness during machining of inconel 718, Inter. J. of Adv. Eng. Tech. E-ISSN 0976-3945. (2013).
  • [5] I. Asilturk, H. Akkus, J. of the Inter. Measur. Conf. 44, 1697 (2011).
  • [6] W. Grzesik, K. Zak J. of Mater. Proc. Tech. 212, 315 (2012).
  • [7] S. Jozit, B. Lela, D. Bajit, A New Mathematical Model for Flank Wear Prediction Using Functional Data Analysis Methodology”, Hin. Pub. C. Adv. in Mater. Sci. and Eng. Article ID 138168, 8 (2014).
  • [8] N. Mandal, B. Doloi, B. Mondal, Development of flank wear prediction model of Zirconia Toughened Alumina (ZTA) cutting tool using response surface methodology, Inter. J. of Ref. Met. and H. Mater. 29 (2), 273-280 (2011).
  • [9] H. Aouici and al., Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45 (3), 344-353 (2012).
  • [10] C. Routara, A. Bandyopadhyay, P. Sahoo, Roughness modeling and optimization in CNC end milling using response Surface method: effect of work piece material variation, Inter. J. of Adv. Man. Tech. 40, 1166-1180 (2009).
  • [11] D. Bajić, L. Celent, S. Jozić, Modeling of the Influence of Cutting Parameters on the Surface Roughness, Tool Wear and Cutting Force inFace Milling in Off-Line Process Control, J. of Mec. Eng. 58, 11, 673-682 (2012).
  • [12] F. Nurrnberger, O. Grydin, M. Schaper, F. W. Bach, B. Koczurkiewicz, A. Milenin Microstructure Transformations in Tempering Steels during Continuous Cooling from Hot Forging Temperatures, www.steel research-j.com, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (2010).
  • [13] O. Tugrul, Y. Karpat, Multi- objective optimization for turning processes using neural network modeling and dynamic neighborhood particle swarm optimization, Inter. J. Adv. Man. Tech., DOI 10.1007/s00170-006-0719-8, pp. 234-247 (2007).
  • [14] V. P. Astakhov, S. V. Shvets, The assessment of plastic deformation in metal cutting, J. Mater. Process. Technol. 146, 193-202 (2004).
  • [15] Radhika, Subramanian and Sajith, Analysis of chip formation in machining aluminium hybrid composites, E3 J. of Sci. Research 2 (1), 009-015 (2014).
  • [16] A. U. Alkali, N. M. Yusof, M. H. S. Elmunafi, H. Fawad, Influence of Cutting Conditions on Chip Formation When Turning ASSAB DF-3 Hardened Tool Steel, Inter. J. of Mater. Mech. and Manu. 1 (1) (2013).
  • [17] M. Kaladhar, K. Venkata Subbaiah, R. C. Srinivasa, R. K. Narayana, Determination of Optimum Process Parameter During Turning of AISI 304 Austenitic Stainless Steel, Inter. J. of Lean Thinking 3, (1) (2012).
  • [18] R. Arokiadass, K. Palaniradja, N. Alagumoorthi, A study on tool wear and surface roughness in end milling of particulate aluminium metal matrix composites: Application of response Surface methodology, J. of Comp. and App. Research in Mech. Eng. 2, 1, 1-13 (2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a08223cb-0b3f-4a2f-81bb-4099417ced8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.