PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Land Use/Land Cover change detection in the wetlands. A case study: Al-Aba Oasis, west of Ras Tanura, Kingdom of Saudi Arabia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addition to unthinking anthropogenic meddling with the subtle ecological balance, the territories of Al-Aba Oasis are witnessing various Land Use and Land Cover (LULC) changes. Comprehending LULC is a central facet of upholding a sustainable, friendly, and fit environment. This paper presents a spatiotemporal study of land use and land cover trends in the wetlands of Al-Aba Oasis, an ecologically sensitive area in the west of Ras Tanura in the east of the Kingdom of Saudi Arabia. The study area faces several environmental problems, including the rise in groundwater levels, expansion of agricultural land, urban expansion, and anthropogenic interference with the ecological balance. In this paper, a verified representation of the changes in each LULC class has been made using satellite images. Remote sensing imagery is helpful for studying temporal changes in LULC and providing environmental monitoring data. We analysed Landsat-5 and Sentinel-2 imagery for 1985, 2000, and 2021. The overall precision besides the kappa coefficient for precision assessment indicates the relevance of the LULC classification. LULC map products were overlaid and interpreted based on post-classification change detection methods. The LULC aspects were classified into six classes: water body, waterlogged area, sabkha soil, sandy area, cultivated area, and built-up area. The results prove that from 2001 to 2021, the extension of the built-up area (2.6%) and agricultural land (6.85%) is directly proportional to the population growth (36.5% between 1992 and 2004) and the sabkhas are subject to constant metamorphosis under the joint influence of urban and agricultural land expansion. 100 samples were collected for the years 1986, 2001, and 2021 to assess the accuracy. We reviewed the outcomes of this study by evaluating the accuracy (77, 81, and 84% for 1986, 2001, and 2021 respectively) and comparing the field truth using a GPS (Global Positioning System) sensor. The results of this study are useful in the development of environmental policies during the development of sustainable territorial development programmes of the oasis.
Wydawca
Rocznik
Tom
Strony
229--237
Opis fizyczny
Bibliogr. 49 poz., mapy, rys., tab., wykr.
Twórcy
  • King Faisal University, College of Arts, Social Studies Department, Al-Ahsa, 36441, Saudi Arabia
  • University of Sfax, Faculty of Arts and Human Sciences, Tunisia
Bibliografia
  • ADHIKARI S.H., BAJRACHARAYA R.M., SITAULA B.K. 2009. A review of carbon dynamics and sequestration in wetlands. Journal of Wetlands Ecology. Vol. 2 p. 42–46. DOI 10.3126/jowe.v2i1.1855.
  • ALQURASHI A.F., KUMAR L. 2014. Land Use and Land Cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Advances in Remote Sensing. Vol. 3 p. 106–119. DOI 10.4236/ars.2014.33009.
  • ALQURASHI A.F., KUMAR L., SINHA P. 2016. Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of Saudi Arabia. Remote Sensing. Vol. 8(10), 838. DOI 10.3390/rs8100838.
  • AMIN A., FAZAL S.H. 2012. Quantification of land transformation using remote sensing and GIS techniques. American Journal of Geographic Information System. Vol. 1(2) p. 17–28. DOI 10.5923/j.ajgis.20120102.01.
  • ANSARI A., GOLABI M.H. 2019. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research. Vol. 7(1) p. 64–70. DOI 10.1016/j.iswcr.2018.10.001.
  • BLASCHKE T., HAY G.J., KELLY M., LANG S., HOFMANN P., ADDINK E., FEITOSA R.Q., MEER F.V.D., WERFF H.V.D., COILLIE F.V. 2014. Geographic object-based image analysis – towards a new paradigm. ISPRS, Journal of Photogrammetry and Remote Sensing. Vol. 87 p. 180–191. DOI 10.1016/j.isprsjprs.2013.09.014.
  • BRADLEY B.A. 2009. Accuracy assessment of mixed land cover using a GIS-designed sampling scheme. International Journal of Remote Sensing. Vol. 30(13) p. 3515–3529.
  • BULLOCK A., ACREMAN M. 2003. The role of wetlands in the hydrological cycle. Hydrology and Earth System Science. Vol. 7 p. 358–389.
  • CHANDER G., MARKHAM B.L., DENNIS L., HELDER D.L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. Vol. 113(5) p. 893–903. DOI 10.1016/j.rse.2009.01.007.
  • CHEN J., GONG P., HE C., PU R. SHI P. 2003. Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering and Remote Sensing. Vol. 69 p. 369–379. DOI 10.14358/PERS.69.4.369.
  • CHOUARI W. 2013. Problèmes d’environnement liés à l’urbanisation contemporaine dans le système endoréique d’Essijoumi (Tunisie nord-orientale) [Environmental issues related to contemporary urbanization in the endorheic system of Essijoumi]. Physio-Géo. Vol. 7 p. 111–138. DOI 10.4000/physio-geo.3493.
  • CHOUARI W. 2015. Apport de la cartographie au suivi de l’anthropisation des milieux humides littoraux : Le cas de la lagune de Tunis au XXe siècle [The contribution of cartography in reconstructing past human impacts on coastal wetlands: The case the Tunis Lagoon in the 20th century]. Méditerranée. No. 125 p. 75–84. DOI 10.4000/mediterranee.8015.
  • CHOUARI W. 2021. Wetland land cover change detection using multitemporal Landsat data: A case study of the Al-Asfar wetland, Kingdom of Saudi Arabia. Arabian Journal of Geosciences. Vol. 523 p. 1–12. DOI 10.1007/s12517-021-06815-y.
  • COLETTI J.Z., VOGWILL R., HIPSEY M.R. 2017. Water management can reinforce plant competition in sal-affected semi-arid wetlands. Journal of Hydrology. Vol. 552 p. 121–140. DOI 10.1016/j.jhydrol.2017.05.002.
  • DALE P.E.R., CONNELLY R. 2012. Wetlands and human health: An overview. Wetlands Ecology and Management. Vol. 20 p. 165–171. DOI 10.1007/s11273-012-9264-4.
  • DE BELL S., GRAHAM H., JARVIS S., WHITE P. 2017. The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space. Landscape and Urban Planning. Vol. 167 p. 118–127. DOI 10.1016/j.landurb-plan.2017.06.003.
  • DRONOVA I. 2015. Object-based image analysis in wetland research: A review. Remote Sensing. Vol. 7 p. 6380–6413. DOI 10.3390/rs70506380.
  • EASTMAN J.R. 2003. IDRISI Kilimanjaro Tutorial. Manual Version 14.0. Worcester, Massachusetts. Clark Labs of Clark University pp. 269.
  • FOODY G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment. Vol. 80(1) p. 185–201. DOI 10.1016/S0034-4257(01)00295-4.
  • FOODY G.M. 2010. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment. Vol. 114(10) p. 2271–2285. DOI 10.1016/j.rse.2010.05.003.
  • FROHN R.C., CHAUDHARY N. 2008. Multi-scale image segmentation and object-oriented processing for land cover classification. GIScience & Remote Sensing. Vol. 45(4) p. 377–391. DOI 10.2747/1548-1603.45.4.377.
  • GaStat 2022. Detailed results for the eastern region: population by gender, governorate and nationality. General Authority for Statistics. [Access 10.01.2022]. Available at: https://www.stats.gov.sa/en/13
  • GUSTARD A., WESSELINK A.J. 1993. Impact of land-use change on water resources: Balquhidder catchments. Journal of Hydrology. Vol. 145(3–4) p. 389–401. DOI 10.1016/0022-1694(93)90065-H.
  • HOGLAND J., BILLOR N., ANDERSON N. 2013. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing. European Journal of Remote Sensing. Vol. 46(1) p. 623–640. DOI 10.5721/EuJRS20134637.
  • JOHNSON B.J., MUNAFO K., SHAPPELL L., TSIPOURA N., ROBSON M., EHRENFELD J., SUKHDEO M.V.K. 2012. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosystems. Vol. 15 p. 513–531. DOI 10.1007/s11252-012-0248-1.
  • LIU K., SHI W., ZHANG H. 2011. A fuzzy topology-based maximum likelihood classification. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 66(1) p. 103–114. DOI 10.1016/j.isprsjprs.2010.09.007.
  • LU D., MAUSEL P., BRONDI ́ZIO E., MORAN E. 2004. Change detection techniques. International Journal of Remote Sensing. Vol. 25(12) p. 2365–2407. DOI 10.1080/0143116031000139863.
  • LYONS M.B., KEITH D.A., PHINN S.R., MASON T.J., ELITH J. 2018. A comparison of resampling methods for remote sensing classification and accuracy assessment, Remote Sensing of Environment. Vol. 208 p. 145–153. DOI 10.1016/j.rse.2018.02.026.
  • MA L., LI M., MA X., CHENG L., DU P., LIU Y. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 130 p. 277–293. DOI 10.1016/j.isprsjprs.2017.06.001.
  • MAHMUD M.S., MASRUR A., ISHTIAQUE A., HAIDER F., HABIBA U. 2011. Remote sensing & GIS based spatio-temporal change analysis of wetland in Dhaka City, Bangladesh. Journal of Water Resource and Protection. Vol. 3 p. 781–787. DOI 10.4236/jwarp.2011.311088.
  • MITSCH W.J., BERNAL B., HERNANDEZ M.E. 2015. Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services & Management. Vol. 11 p. 1–4. DOI 10.1080/21513732.2015.1006250.
  • MONDAL B., DOLUI G., PRAMANIK M., MAITY S., BISWAS S.S., PAL R. 2017. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecological Indicators. Vol. 83 p. 62–73. DOI 10.1016/j.ecolind.2017.07.037.
  • NCM 2022. Climate Reports in Saudi Arabia. National Center for Meteorology. [Access 10.01.2022]. Available at: https://ncm.gov.sa/Ar/MediaCenter/Reports/Pages/default.aspx
  • O’BRIEN M., WECHSLER D., BRINGEZU S., SCHALDACH R. 2017. Toward a systemic monitoring of the European bioeconomy: Gaps, Leeds and the integration of sustainability indicators and targets for global land use. Land Use Policy. Vol. 66 p. 162–171. DOI 10.1016/j.landusepol.2017.04.047.
  • OZESMI S.L., BAUER M.E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management. Vol. 10 p. 381–402. DOI 10.1023/A:1020908432489.
  • PRASAD G., RAMESH M.V. 2019. Spatio-temporal analysis of Land Use/Land Cover changes in an ecologically fragile area – Alappuzha District, Southern Kerala, India. Natural Resources Research. Vol. 28 p. 31–42. DOI 10.1007/s11053-018-9419-y.
  • PRIBADI D., PAULEIT S. 2015. The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy. Vol. 48 p. 13–24. DOI 10.1016/j.landuse-pol.2015.05.009.
  • REBELO L.M., FINLAYSON C.M., NAGABHATLA N. 2007. Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management. Vol. 90(7), 2009 p. 2144–2153. DOI 10.1016/j.jenvman.2007.06.027.
  • RWANGA S.S., NDAMBUKI J.M. 2017. Accuracy assessment of Land Use/Land Cover classification using remote sensing and GIS. International Journal of Geosciences. Vol. 8 p. 611–622. DOI 10.4236/ijg.2017.84033.
  • SUN B., ZHOU Q. 2016. Expressing the spatio-temporal pattern of farmland change in arid lands using landscape metrics. Journal of Arid Environments. Vol. 124 p. 118–127.
  • SUN J., YANG J., ZHANG C H ., YUN W., QU J. 2013. Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Mathematical and Computer Modelling. Vol. 58(3–4) p. 573–581. DOI 10.1016/j.mcm.2011.10.063.
  • TELLEN V.A., YERIMA B.P.K. 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research. Vol. 7(3) p. 1–29. DOI 10.1186/s40068-018-0106-0.
  • TSUTSUMIDA N., COMBER A. 2015. Measures of spatio-temporal accuracy for time series land cover data. International Journal of Applied Earth Observation and Geoinformation. Vol. 41 p. 46–55. DOI 10.1016/j.jag.2015.04.018.
  • USGS 2022. Landsat Satellite Missions. United States Geological Survey. [Access 10.01.2022]. Available at: https://www.usgs.gov/landsat-missions/landsat-satellite-missions
  • VAN DEN BROECK M., WATERKEYN A., RHAZI L., GRILLAS P., BRENDONCKA L. 2015. Assessing the ecological integrity of endorheic wetlands, with focus on Mediterranean temporary ponds. Ecological Indicators. Vol. 54 p. 1–11. DOI 10.1016/j.ecolind.2015.02.016.
  • VERHOEVEN J., SETTER T. 2010. Agricultural use of wetlands: Opportunities and limitations. Annals of Botany. Vol. 105(1) p. 155–163. DOI 10.1093/aob/mcp172.
  • WAGNER P.D., KUMAR S., SCHNEIDER K. 2013. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences. Vol. 17 p. 2233–2246. DOI 10.5194/hessd-10-1943-2013.
  • XU T., WENG B., YAN D., WANG K., LI X., BI W., LI M., CHENG X., LIU Y. 2019. Wetlands of international importance: Status, threats, and future protection. International Journal of Environmental Research and Public Health. Vol. 16(10), 1818. DOI 10.3390/ijerph16101818.
  • ZEBARDAST L., JAFARI H.R. 2011. Use of remote sensing in monitoring the trend of changes in Anzali Wetland in Iran and proposing environmental management solution. Journal of Environmental Studies. Vol. 37(1) p. 57–64.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a08066af-569e-41db-8e28-58069d0f9035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.