PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computational environment HYDRO-PATH as a flexible tool for operational rainfall-runoff model design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The overall objective of the ongoing work is to develop the computational environment HY DRO-PATH as a flexible tool for forecasting runoff from catchment areas for various hydrometeorological conditions while taking into account the information available on a real-time basis. Ensuring the model’s operational reliability and reducing the uncertainty of generated forecasts is accomplished through the adjustment of both the internal structure of the model and the spatial representation of the computational grid to the physiographical, hydrological and climatological characteristics of a given basin. The research focused on the development of methods for selecting the optimal model structure and parameters by analysing the results obtained for different model structures. This is achieved through the computational environment, in which it is possible to implement different types of hydrological rainfall-runoff models. These models have a unified system of data input, parameter optimisation rules, and procedures for result generation. The developed elements of the computational environment correspond to generation potential of models with a given structure and complexity. Furthermore, within the framework of HY DRO-PATH the following components were developed: an application programming interface (API), a data assimilation module, a module for computational representation of a real object, and a module for the estimation and optimisation of model parameters. The developed computational environment was applied to prepare a version of TOPO-Flex and perform hydrological validation of the model’s results. The hydrological validation was performed for selected flood events in the Bystrzyca Dusznicka subbasin of the Nysa Kłodzka River.
Twórcy
autor
  • Institute of Meteorology and Water Management − National Research Institute, Podleśna 61, 01-673 Warsaw, Poland
  • Institute of Meteorology and Water Management − National Research Institute, Podleśna 61, 01-673 Warsaw, Poland
autor
  • Institute of Meteorology and Water Management − National Research Institute, Podleśna 61, 01-673 Warsaw, Poland
  • Wrocław University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, PlacGrunwaldzki 24, 50-363 Wrocław, Poland
  • Wrocław University of Science and Technology, Institute of Computer Engineering, Control and Robotics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
Bibliografia
  • Anderson M.P., Woessner W.W., 1992, Applied groundwater modeling: simulation of flow and advective transport, 2nd ed., Academic Press, 381pp.
  • Bäck T., Schwefel H.P., 1993, An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, 1 (1), 1-23
  • Beven K.J., Lamb R., Quinn P.F., Romanowicz R., Freer J., 1995, TOPMODEL, [in:] Computer Models of Watershed Hydrology, V.P. Singh (eds.), Water Resources Publications, Colorado, USA, 627-668
  • Brown V.A., McDonnell J.J., Burns D.A., Kendall C., 1999, The role of event water, a rapid shallow flow component and catchment size in summer stormflow, Journal of Hydrology, 217 (3-4), 171-190, DOI: 10.1016/S0022-1694(98)00247-9
  • Butts M., Paynea J.T., Kristensen M., Madsena H., 2004, An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation, Journal of Hydrology, 298 (1-4), 242-266, DOI: 10.1016/j.jhydrol.2004.03.042
  • Chormański J., Michałowski R., 2011, Hydrological catchment model WetSpa-SGGW integrated with a calculation module in ArcGIS environment (in Polish), Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska, 53, 196-206
  • Chou C.-M., 2012, Particle swarm optimization for identifying rainfall-runoff relationships, Journal of Water Resource and Protection, 2, 115-126, DOI: 10.4236/jwarp.2012.43014
  • Clark M.P., Kavetski D., Fenicia F., 2011, Pursuing the method of multiple working hypotheses for hydrological modelling, Water Resources Research, 47 (9), DOI: 10.1029/2010WR009827
  • Clark M.P., Slater A., Rupp D., Woods R., Vrugt J., Gupta H., Wagener T., Hay L.E., 2008, Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44 (12), 1-14, DOI: 10.1029/2007WR006735
  • Cloke H.L., Pappenberger F., 2009, Ensemble flood forecasting: a review, Journal of Hydrology, 375 (3-4), 613-626, DOI: 10.1016/j.jhydrol.2009.06.005
  • Fenicia F., Kavetski D., Savenije H.H.G., 2011, Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47 (11), DOI: 10.1029/2010WR010174
  • Fenicia F., McDonnell J.J., Savenije H.H.G., 2008a, Learning from model improvement: on the contribution of complementary data to process understanding, Water Resources Research, 44 (6), DOI: 10.1029/2007WR006386
  • Fenicia F., Savenije H.H.G., Pfister P.M.L., 2007, A comparison of alternative multiobjective calibration strategies for hydrological modelling, Water Resources Research, 43 (3), DOI: 10.1029/2006WR005098
  • Fenicia F., Savenije H.H.G., Pfister P.M.L., 2008b, Understanding catchment behavior through stepwise model concept improvement, Water Resources Research, 44 (1), DOI: 10.1029/2006WR005563
  • Gan T.Y., Dlamini E.M., Biftu G.F., 1997, Effects of model complexity and structure, data quality, and objective functions on hydrologic modelling, Journal of Hydrology 192 (1-4), 81-103, DOI: 10.1016/S0022-1694(96)03114-9
  • Gao H., Hrachowitz M., Fenicia F., Gharari S., Savenije H.H.G., 2014, Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrology and Earth System Sciences, 18, 1895-1915, DOI: 10.5194/hess-18-1895-2014
  • Gądek W., 2002, Mathematical model of runoff from a watershed with spatially a decomposed calculation grid (in Polish), Zeszyty Naukowe Politechniki Krakowskiej – Seria Inżynieria Środowiska, 49, 134 pp.
  • Gharari S., Hrachowitz M., Fenicia F., Savenije H.H.G., 2011, Hydrological landscape classification: investigating the performance of HAN D based landscape classifications in a central European mesoscale catchment, Hydrology and Earth Systems Science, 15, 3275-3291, DOI: 10.5194/hess-15-3275-2011
  • Gharari S., Hrachowitz M., Fenicia F., Gao H., Savenije H.H.G., 2014, Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrology and Earth System Sciences, 18, 4839-4859, DOI: 10.5194/hess-18-4839-2014
  • Gupta H.V., Sorooshian S., Yapo P.O., 1998, Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information, Water Resources Research, 34 (4), 751-763, DOI: 10.1029/97WR03495
  • Gupta H.V., Wagener T., Liu Y., 2008, Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrological Processes, 22, 3802-3813, DOI: 10.1002/hyp.6989
  • Georgakakos K.P., Seo D.-J., Gupta H., Schaake J., Butts M.B., 2004, Characterizing streamflow simulation uncertainty through multimodel ensembles, Journal of Hydrology, 298 (1-4), 222-241, DOI: 10.1016/j.jhydrol.2004.03.037
  • Hümann M., Müller C., 2013, Improving the GIS-DRP approach by means of delineating runoff characteristics with new discharge relevant parameters, ISPRS International Journal of Geo-Information, 2, 27-49, DOI: 10.3390/ijgi2010027
  • Kavetski D., Fenicia F., 2011, Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights, Water Resources Research, 47 (11), DOI: 10.1029/2011WR010748
  • Kirchner J.W., 2006, Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology, Water Resources Research, 42 (3), DOI: 10.1029/2005WR004362
  • Lastoria B., 2008, Hydrological processes on the land surface: a survey of modeling approaches, University of Trento, Italy, 60 pp., available at http://www.ing.unitn.it/dica/tools/download/Quaderni/Foralps_TR _9.pdf (data access 02.06.2016)
  • Müller C., Hellebrand H., Seeger M., Schobel S., 2009, Identification and regionalization of dominant runoff processes – a GIS - based and a statistical approach, Hydrology and Earth System Sciences, 13, 779-792, DOI: 10.5194/hess-13-779-2009
  • Nash J.E., Sutcliffe J.V., 1970, River flow forecasting through conceptual models part I – A discussion of principles, Journal of Hydrology, 10 (3), 282-290, DOI: 10.1016/0022-1694(70)90255-6
  • Nocedal J., Wright S.J., 2006, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, USA , 664 pp., DOI: 10.1007/978-0-387-40065-5
  • Nobre A.D., Cuartas L.A., Hodnett M., Rennó C.D., Rodrigues G., Silveira A., Waterloo M., Saleska S., 2011, Height Above the Nearest Drainage – a hydrologically relevant new terrain model, Journal of Hydrology, 404 (1-2), 13-29, DOI: 10.1016/j.jhydrol.2011.03.051
  • Perrin C., Michel C., Andréassian V., 2001, Does a large number of parameters enhance model performance? Comparative essessment of common catchment model structures on 429 catchments, Journal of Hydrology, 242 (3-4), 275-301, DOI: 10.1016/S0022-1694(00)00393-0
  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 2007, Numerical recipes. The art of scientific computing, 3rd edition, Cambridge University Press, 1256 pp.
  • Pushpalatha R., Perrin C., Le Moine N., Mathevet T., Andréassian V., 2011, A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411 (1-2), 66-76, DOI: 10.1016/j.jhydrol. 2011.09.034
  • Rennó C.D., Nobre A.D., Cuartas L.A., Soares J.V., Hodnett M.G., Tomasella J., Waterloo M.J., 2008, HAND, a new terrain descriptor using SRT M-DEM: Mapping terra-firme rainforest environments in Amazonia, Remote Sensing of Environment, 112 (9), 3469-3481, DOI: 10.1016/j.rse.2008.03.018
  • Romanowicz R.J., 1997, A MATLAB implementation of TOPMODEL, Hydrological Processes, 11 (9), 1115-1129, DOI: 10.1002/(SICI )1099-1085(199707)11:9<1115::AI D-HY P548>3.0.CO;2-T
  • Savenije H.H.G., 2010, HESS Opinions “Topography driven conceptual modeling (FLEX-Topo)”, Hydrology and Earth System Sciences, 14, 2681-2692, DOI: 10.5194/hess-14-2681-2010
  • Shamir E., Imam B., Morin E., Gupta H.V., Sorooshian S., 2005, The role of hydrograph indices in parameter estimation of rainfall-runoff models, Hydrological Processes, 19, 2187-2207, DOI: 10.1002/hyp.5676
  • Seiller G., Anctil F., Perrin C., 2012, Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions, Hydrology and Earth System Sciences, 16 (4), 1171-1189, DOI: 10.5194/hess-16-1171-2012
  • Soczyńska U., 1997, Dynamic Hydrology (in Polish), Wydawnictwo Naukowe PWN, Warszawa, 409 pp.
  • Szalińska W., Tokarczyk T., Chorążyczewski A., Jełowicki J., Michalski A., Tiukało A., Ostojski M.S., 2014, Computational environment of the operational rainfall-runoff model (in Polish), [in:] Monografie Komitetu Gospodarki Wodnej PAN , Hydrologia w inżynierii i gospodarce wodnej, K. Banasik, L. Hejduk, E. Kaznowska (eds.), 293-306
  • Son K., Sivapalan M., 2007, Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data, Water Resources Research, 43 (1), DOI: 10.1029/2006WR005032
  • Szturc J., Jurczyk A., Ośródka K., Struzik P., Otop I., 2014, Estimation of the surface rainfall field with the use of different data sources together with the spatial information on their quality (in Polish), [in:] Monografie Komitetu Gospodarki Wodnej PAN , Hydrologia w ochronie i kształtowaniu środowiska, A. Magnuszewski (ed.), 19-30
  • Todini E., 2006, Rainfall-runoff models for real-time forecasting, [in:] Encyclopedia of Hydrological Sciences, John Wiley & Sons, 11-123, DOI:10.1002/0470848944.hsa131.
  • Thyer M., Renard B., Kavetski D., Kuczera G., Franks S.W., Srikanthan S., 2009, Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis, Water Resources Research, 45 (12), DOI: 10.1029/2008WR006825
  • Vaze J., Post D.A., Chiew F.H.S., Perraud J.-M., Teng J., Viney N.R., 2011, Conceptual rainfall-runoff model performance with different spatial rainfall inputs, Journal of Hydrometeorology, 12 (5), 1100-1112, DOI: 10.1175/2011JHM1340.1
  • Velazquez J.A., Anctil F., Ramos M.H., Perrin C., 2011, Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures, Advances in Geosciences, 29, 33-42, DOI: 10.5194/adgeo-29-33-2011
  • Wagener T., Boyle D.P., Lees M.J., Wheater H.S., Gupta H.V., Sorooshian S., 2001, A framework for development and application of hydrological models, Hydrology and Earth System Sciences, 5 (1), 13-26, DOI: 10.5194/hess-5-13-2001
  • Wagener T., McIntyre N., 2005, Identification of rainfall-runoff models for operational applications, Hydrological Sciences Journal, 50 (5), 735-751, DOI: 10.1623/hysj.2005.50.5.735
  • Wagener T., McIntyre N., Lees M.J., Wheater H.S., Gupta H.V., 2003, Towards reduced uncertainty in conceptual rainfallrunoff modeling: Dynamic identifiability analysis, Hydrological Processes, 17 (2), 455-476, DOI: 10.1002/hyp.1135
  • Westerberg I.K., Guerrero J.-L., Younger P.M., Beven K.J., Seibert J., Halldin S., Freer J.E. Xu C.-Y., 2011, Calibration of hydrological models using flow-duration curves, Hydrology and Earth System Sciences, 15, 2205-2227, DOI: 10.5194/hess-15-2205-2011
  • Yilmaz K.K., Gupta H.V., Wagener T., 2008, A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model, Water Resources Research, 44 (9), DOI: 10.1029/2007WR006716
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0765d70-7f7e-4980-9f1b-d48a068e010e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.