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Abstract 
The paper presents results of the analysis of safety-critical embedded systems using a time 

triggered-architecture.  First, a distributed safety-critical embedded system is defined in terms of its 
interfaces with the physical world, and possibilities of failures that can cause safety problems.  Then, 
a model is built that allows mapping the safety functions to the time-triggered architecture.  Finally, 
based on this model, a case study of an anti-lock braking system is developed and analyzed with 
respect failures that can lead to violations of system safety. The results show that time-triggered 
architecture can lead to meaningful results in the analysis of safety issues in distributed real-time 
embedded systems. 

INTRODUCTION 
Safety of embedded computer systems is of ever-growing importance, because of the 

continuously increasing functionality and resulting complexity of computer control 
applications. Safety aspects are important in all embedded systems but are critical in such 
applications as transportation, where the failure of hardware or software can result in the loss 
of life, limbs, or large financial losses. The technologies for providing safety assurance for 
embedded system are therefore of primary concern [1, 2].  

The traditional technologies for safety assurance in embedded control systems are 
typically based on the architecture of feedback control in a single loop (Fig. 1) and they rarely 
apply  results from continuous systems analysis, focusing on discrete models for safety 
analysis [3], using, for example, finite state machines, queuing theory, Petri nets, including 
artificial intelligence techniques, such as rule-based reasoning, Bayesian belief networks, even 
rough sets.  The continuous system analysis is much harder to carry out and manage for 
complex embedded system.  There are, however, many efforts to use extended models to 
define functionality of the embedded system, perform hazard and risk analysis using 
continuous system approach, systematically transform models into more fault resilient, and 
verify the fault resilient behavior of transformed models using again continuous systems 
analysis. Such models can be then used for software development of distributed embedded 
computer control systems. 
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Fig. 1. General Model of an Embedded Computer Controlled System. 

One of the specific technologies for safety assurance of distributed real-time embedded 
systems, to determine and improve their safety that gained attention in recent years is the 
time-triggered architecture [4]. A real-time computer system is a computer system in which 
both the validity of computations and their compliance with specific timing constraints are 
considered. In some of these systems, computations must be performed within strict deadlines 
to avoid possibly catastrophic or costly consequences. For such systems, the failure to meet a 
deadline is considered a failure of the system, and these systems are called hard real-time 
systems (as opposed to soft real-time systems, where failures are not critical with respect to 
safety) [4]. A distributed real-time system is a system with computational processes 
distributed amongst multiple components, each of which is essentially a different computer.  

There are presently two major types of technological approaches to design of distributed 
real-time embedded systems. They are the event-triggered systems and the time-triggered 
systems. In an event-triggered system, components perform computations in response to 
various events (environmental and otherwise) and communicate by passing the results of 
these computations as messages on the communication medium, usually a bus. When multiple 
events take place, some of them must wait to be handled until preceeding and/or higher 
priority events have been handled and their results communicated. In periods of high activity, 
it is possible that some events may never be handled, because of the system overload. This 
can be problematic in hard real-time systems, in which the delay of a message may render it 
useless and cause system failure, which could be critical to safety. 

This communication issue is avoided by the use of a time-triggered architecture. In a time-
triggered architecture, the only events that trigger component behavior are based on time. A 
global communications schedule is created prior to run-time and completely determines the 
order of each component's communication, as components may only send messages during 
the time assigned to them by the schedule. As a consequence a time-triggered system is 
deterministic, because the timing of events is known in advance. That is, given the current 
state of a time-triggered system and all future inputs, it is possible to predict any future state 
of the system [4]. 

In this project we concentrated on studying distributed real-time embedded systems to 
address and determine their safety by introducing fault tolerance. Our emphasis was on 
distributed real-time embedded systems with redundant nodes to investigate how redundancy 
and fault tolerance can improve safety. The time-triggered architecture was chosen for a 
couple of reasons. First, such architecture allows avoiding communication issues described 
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above and, secondly, allows for a much more thorough analysis of the behavior of distributed 
real-time systems by using continuous models. 

The rest of the paper is structured as follows.  Section 1 outlines some previous work in 
automotive system safety and sets the stage for the current project.  Section 2 defines the 
objectives of this project, the basic model selected for the analysis of safety, and technologies 
to address the related issues.  Section 3 discusses the case study and the experiments 
conducted. The paper ends with a conclusion. 

1. IMPACT OF EMBEDDED SYSTEMS ON AUTOMOTIVE SAFETY  
According to a recent study of the U.S. Transportation Research Board [5], spurred by a 

series of accidents related to unintended acceleration: 
Proliferating and increasingly interconnected electronics systems are creating 
opportunities to improve vehicle safety and reliability as well as demands for 
addressing new system safety and cybersecurity risks. 

The report has acknowledged that, while electronics are central to the basic functionality 
of modern automobiles, at the same time they lead to new demands for ensuring the safe 
performance of these systems.  In particular, even though it is clear that automotive 
electronics provide numerous benefits to reliability and safety of vehicles, they also present 
safety challenges.  Specifically, “development of vehicle control strategies that are fail-safe 
(or fail-soft) in the event of some unforeseen and potentially unsafe vehicle operating 
condition is a critical goal for automotive manufacturers” [5]. 

What is stated in this report, has been pursued by researchers and manufacturers over 
some time.  Only in the last decade, embedded systems safety and software safety in 
automotive systems have been investigated in a wide range of publications.  For example, 
Papadopoulos et al. proposed conducting the modeling and analysis of automotive 
applications safety by using fault trees  and failure propagation [6].  They were able to 
generate safety analysis from design models using in-house tool cooperating with 
Matlab/Simulink simulations.  Czerny et al. [7] and Leaphart et al. [8] reviewed software fail-
safe techniques for safety in automotive applications, to detect failures in Electronic Control 
Unites (ECU) of vehicle.  Among those analyzed were: complement storage read/write, 
checksum compares, redundant coding, redundantly orthogonal, program flow monitoring, 
initialization tests, and others. A case study of Delphi’s Electric brake system was used as an 
application, with software safety lifecycle as a process. 

Panaroni et al. [9] focused on discussing how to address automotive safety through fault 
tolerance, including traditional techniques of fault prevention/avoidance, fault removal, fault 
detection, fault isolation/containment, and fault recovery.  They advocate using safety 
lifecycle standards, such as IEC 61508 and ISO 26262, to mitigate potential failures in early 
phases of system and software development. 

More recently, Stringefellow et al. [10] outlined a safety-driven design technique that 
addresses vehicle hazard analysis. Their approach is consistent with a general model of a 
control system presented in Figure 1.  They describe a new hazard analysis approach based on 
an expanded model of causality derived from system theory.  A case study from the aerospace 
domain is discussed, but the technique applies to automotive systems, as well. 

Heckemann et al. [11] discussed safety challenges of autonomously driven vehicles vs. 
requirements of the ISO 26262 standard, and proposed a safety cage architecture to allow a 
formal verification of the system behavior.  They claim that combining this concept with 
multisensory data fusion will improve dependability, thus, enabling automotive safety. 

All these papers provide a cross-section of current methods for addressing safety issues in 
embedded systems for automotive applications, which we followed in the current project, as 
described in the next section. 
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2. ADDRESSING SAFETY ISSUES IN AUTOMOTIVE SYSTEMS 
Following the most recent work discussed in [10] and [11], we adopt a general model of a 

control system, as outlined in Figure 1, consistent with [10], and add to it a concept of a safety 
shell composed of guards, which follows the idea of a safety cage described in [11] (Figure 
2).  With this in mind, with respect to safety, such a system is subjected to various hazards 
related to a possibility of numerous failures of the controller itself and its interfaces to the 
operator, the network and the physical plant (its physical objects or subsystems).  

 

 
Fig. 2. Illustration of a Safety Shell Concept. 

As described in previous work [12], the failures of the controller can involve: (a) 
“omission failure” caused by the controller to react correctly, (b) “commission failure” caused 
by controller providing incorrect commands or inputs, or (c) “timing failure” caused by 
controller responding outside of timing constraints. The failures of physical subsystems in the 
plant can not only involve providing incorrect response or no response at all but also can 
cause important “physical” failures whose consequences need to be clearly identified. The 
operator failures are also of crucial importance but, actually, they can be modeled as another 
physical subsystem allowing for more uniform hazard analysis. All these failures need to be 
identified and systematically classified as part of proper hazard analysis. This leads to a 
concept of splitting the safety shell into guards, which are individually assigned to respond to 
safety related issues at a specific interface.  

With this model in mind, involving a shell and its guards, we decided to focus only on 
once specific boundary, which is a communication interface, and adopt principles of fault 
tolerance in achieving safety, as per [9].  The tools selected for the study follow the industry 
standard Matlab/Simulink, which have been used for years in similar projects in the 
automotive industry [6].  A more educated decision was required to select a case study.   

Even though modern automotive vehicles are equipped in around a dozen of embedded 
computers or microcontrollers, among them: control of engine, transmission and throttle, 
brake power assistance and lockup control, traction and stability control, suspension control, 
power steering assist, adaptive cruise control, occupant protection (air bags, seat belts), etc. 
[5], a decision to choose the right example to demonstrate benefits of safety analysis is not an 
easy one, because the results of the analysis should be applicable to a range of subsystems. 
The initial selection of a brake system in [8] was supported, with further backup from the 
TRB report [5]. 
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As described in the TRB report [5], it is an Antilock Brake System (ABS), which most of 
the new automotive vehicles are equipped with.  Since it has been introduced in the early 
1980’s, it provided multiple benefits to safety improvement: 

A typical system uses an electronic control unit and speed sensors in the 
wheels. The control unit constantly monitors the speed of each wheel. If it 
detects a wheel rotating more slowly than the others, which indicates an 
impending wheel lock, the unit will reduce the brake pressure at the affected 
wheel.  In the event of an ABS failure, the system reverts to conventional 
braking, in which the pressure applied to the brake pedal by the driver is not 
modulated by the computer and skidding can occur on slippery surfaces. 

ABS safety, however, has been analyzed many times since its invention, for example, in 
[13], What was more interesting to us in this research, is not the ABS itself, but its further 
development, a brake-by-wire (BBW) system, that is, a system which would eliminate the 
mechanical connection between pedal and the actual brakes, by electronically activating 
motors of each wheel of a vehicle.  As stated in [5], since this is an advanced concept, not yet 
fully utilized, a convincing case must be made with regard to its operational reliability.  One 
approach to do this would be to apply a redundant system, as in the apparently similar case of 
aircraft fly-by-wire. 

This leads us to the objective of this project:  investigate whether redundancy is a 
technology which improves safety of a brake-by-wire system.  To study the answer to this 
question, we make the following technical assumptions: 

– use the model of a safety shell and its guard for communication interface only 
– use a time-triggered system from TTTech [14] to implement the ABS/BBW systems 
– use Matlab/Simulink with RealTime Workshop [15] for simulation support. 
With this in mind, the rest of the paper is structured as follows. First, we define the basic 

model’s system functionality by simulation diagrams in Simulink. Second, we develop and 
classify all identifiable failures. Third, we test the simulation system assuming different 
failures to understand the fault tolerance of the system. Fourth, we introduce the node 
redundancy in the implementation and observe the synchronization problems. Fifth, we insert 
a “guard” in the simulation models to improve the system safety. Sixth, we verify correctness 
of the improved simulation models. 

3. CASE STUDY: BREAK-BY-WIRE SYSTEM 
Following the recent work discussed in [10] and [11], we adopted a general model of a 

control system, as outlined in Figure 1, which consistent with the one presented in [10], and 
added to it a concept of a safety shell composed of guards, which is consistent with a safety 
cage, as described in [11] (Figure 2).   

3.1. Basic Assumptions 
To analyze the behavior of time-triggered systems under various faults, an anti-lock 

braking system (ABS) in a Break-by-Wire (BBW) version was chosen as a case study. For 
simulations a 4-node TTTech development cluster [14] was used in conjunction with Matlab's 
Simulink and Real-Time Workshop [15].  The basic models of anti-lock braking systems were 
transformed to improve performance under various faults. Models of an ABS system on a 
single wheel and of an entire car were also used in the simulations but to simplify the 
presentation only single wheel models are described in this paper.  

An ABS system serves to prevent the wheel lock. The ability of a vehicle to lock the 
brakes is related to the fact that the static coefficient of friction between tires and the road 
surface is much greater than the dynamic coefficient of friction. That is, when the part of the 
tire in contact with the road is moving relative to the road, it takes less force to continue 
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moving. This results in the wheel lock and increased stopping time and distance traveled by 
the vehicle between the time of brake application and the end of the vehicle's movement. 
Preventing the wheel lock is accomplished by appropriately regulating the application of the 
vehicle's brakes. 

 
Fig. 3. Basic Model of an ABS/BBW Controller. 

In a typical ABS system (Figure 3), there are several major components. These are speed 
sensors, brake line valves to relieve pressure, a pump, and the rea-time controller. When the 
operator of a vehicle attempts to apply the brakes, the wheel-speed sensors detect the 
deceleration of the wheels.  If the deceleration on a wheel is too large, the ABS controller 
forces the appropriate valves to relieve pressure on that wheel's brake. This decreases the 
brake-force on that wheel, and decreases the deceleration of the wheel. This is crucial as great 
deceleration typically leads to wheel-lock. Two preexisting Simulink ABS models are 
considered in this paper. 

3.2. Representing Simulation Models 
As a first basic ABS model the quarter-vehicle model (QVM) was used. This model was 

created by TTTech and included with the TTP-Matlink setup software. The QVM consists of 
subsystems composed of Simulink block diagrams, with each subsystem simulating a 
necessary part of an ABS for a single wheel. In all, this model has four unique messages 
being sent from its subsystems in every TDMA (Time-Division Multiple Access) round. 

There are four distinct subsystems: calculation of brake force as a main function of ABS 
controller, pedal position sensing, wheel speed modeling, and monitoring of wheel speed 
values. The subsystem responsible for calculating brake force (Figure 4) is composed of two 
blocks implementing logic to calculate brake force and clamp the brake force to 0 if required. 
The brake force computation block will only generate a non-zero brake force if the pedal 
sensor subsystem sends pedal_pos signal. 

 

 
Fig. 4. The Brake Force Calculation Subsystem 
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The subsystem responsible for representing the brake pedal just sends a constant value 
every round – the presence of this signal is considered by other subsystems to indicate the 
intent to apply the brakes by the driver of the vehicle. The Brake Model subsystem takes the 
last-calculated brake_force and prev_wheel_speed values and uses them to calculate a 
new wheel_speed value. The brake_force message is adjusted for the vehicle's mass, and 
used for the integration step. The Previous Wheel Speed Monitor subsystem reads the value 
of wheel_speed and broadcasts it again during its next time slot. 

Resetting the wheel speed to full speed instantaneously is an important part of the 
simulation.  This allows the simulation to repeat itself quickly without simulation of vehicle 
acceleration, which is not interesting from the point of view of brake behavior analysis.  

The four-wheel vehicle model (FVM) that simulates the brakes of four wheels and their 
relationships is obviously much more complicated but the structure of the whole systems 
remains the same. For example, there are differences in the wheel speed model, that needs 
additional subsystem, the wheel-speed averager. The wheel-speed averager subsystem takes 
as inputs the speed of each node's wheel and produces the speed of the vehicle. 

3.3. Analysis of the Vulnerability of the Simulation Models 
The main emphasis of this project was to weigh the impact of the assignment of redundant 

computational processes to components on the simulated system with the presence of various 
faults. This objective was met by comparing the results of multiple fault-injection scenarios 
over multiple versions of simulation models. An important part of the project was to develop 
techniques to transform simulated models to reduce the impact of these faults, and evaluating 
the usefulness of the different solution. As a result, we determined how the distribution of the 
system's processes over its components changes both the systems susceptibility to faults and 
effects fault-correcting techniques. 

For illustration of the encountered problems and solution,s let us consider the following 
distribution of processes as shown in Figure 5. The pedal sensor runs on separate node (Node 
D) while the remaining three nodes redundantly calculate the brake force calculation.  The 
wheel speed monitor runs on one of the brake force calculating nodes.  Similarly, the brake 
model runs on another node containing of the brake force calculation. 
  

 

Fig. 5. First QVM Mapping 
 



 

2272   TTS 

Different fault models were selected for this and other differently distributed QVM/FVM 
simulations. These fault models define the disruption of the communication of individual 
nodes via the TTTech disturbance node, to simulate component disruption in a manner that 
may be observed in a real ABS.  

It is expected that this mapping should perform without failure when subjected to fault 
injections that disturb and disable the node performing only brake force calculations, as this is 
redundantly-performed, but fail when the non-redundant braking model and pedal sensor 
nodes are disrupted. 

3.4. Basic Model Simulation Results 
Simulation models were tested under individual node disturbance scenarios to simulate 

various component failures. The nodes of the development cluster communicated via a dual-
channel bus, to which each node is connected. The fault injection scenarios specified a 
particular schedule for the disturbance node to “communicate” on the bus. Essentially, the 
disturbance node was set to send a high signal on the bus at specific time periods for specific 
lengths of time so as to prevent a specific node from being able to send its messages. In all 
experiments shown in disturbance scenario execution began between rounds 1100 and 1400 
and lasted 3000 rounds. 

  

Fig. 6.  Results of disabling Node A of QVM 

In Figure 6, the results of preventing Node A from communicating are presented. As Node 
A runs the prev_wheel_speed subsystem, responsible for restarting the simulation when 
wheel speed reaches zero, and the brake_calc subsystem, responsible for calculating the 
speed of the wheel, disturbance of Node A, was expected to prevent the simulation from 
continuing to repeat after it finished. Since the brake_calc subsystem is redundant, 
however, the simulation in progress at the time of the initial disturbance was expected to run 
to completion without issue. Figure 7 shows that that is exactly what happened. The 
simulation restarted and ran normally as if no disturbance had happened. 
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Fig. 7. Results of Disabling Node B of QVM 

Further, disabling Node B, was expected to have no effect on the system because of the 
redundancy. This was not the case, since the disturbance scenario was executed prior to round 
1100, and the current simulation at that time ran to completion. However, the decline of the 
wheel speed became linear.  Disabling Node C was expected to lead to simulation failure, and 
this is what happened. This is because Node C is the only node in the QVM to calculate the 
wheel speed. Node D is the only node of the QVM that runs the pedal sensor subsystem, and 
it runs nothing else. Thus, when Node D is disturbed, the simulation is expected to halt 
application of the brake and allow the wheel speed to decelerate linearly until it stops. That 
was observed in the experimental results. 

3.5. The Modified Model and Its Verification 
The modified models had to correct all problems identified in the previous simulations. 

Let us concentrate on two first problems discussed above. The first problem was related to the 
simulation itself running properly, more specifically properly restarting the simulation. The 
model improvement  was accomplished by designing a separate meta-system Simulation 
Control. The second problem related to the lack of differentiation between failure of a 
subsystem and failure of communication with the subsystem required much more complex 
model transformation. The “live” signal was introduced and the necessary estimation logic to 
calculate estimated wheel_speed and estimated brake_force was introduced. Since the 
brake_model calculates wheel_speed as a function of brake_force, the removal of a 
non-redundant brake_calc subsystem previously resulted in a complete breakdown of the 
simulated embedded system. By giving the brake_model the ability to estimate the correct 
amount of brake_force to apply, it is possible to partially mimic the ordinary, faultless 
behavior of the system. 
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Fig. 8. High-level View of Brake Force Calculator Subsystem 

The brake-force-calculating subsystem performs the same role as before, calculating and 
broadcasting the brake_force message as a function of wheel speed and its clamping block is 
unchanged from the unmodified model. However, an "alive" message block (Figure 8) has 
been added, and the block responsible for computing the brake force as function of wheel 
speed, shown in Figure 8, has been greatly expanded. The brake force computation block now 
checks whether the brake_model subsystem is "alive" prior to computing the necessary 
brake force. The simulation results showed that the modified QVM model now behaves 
normally in response to disturbances that disable any individual node of Node A, B, or C as 
shown in Figure 9. 
 

 

Fig. 9. Simulation with Node A Disabled  



 

TTS   2275 

CONCLUSION 

The goal of this project was to gain an understanding of how to improve vehicle safety by 
using fault tolerance in a time-triggered embedded system with redundant nodes by 
transformations of simulation models.  The introduction of redundant nodes is a well-
established technique to improve safety of embedded systems [1-4]. Unfortunately, only 
advantages of redundant nodes are usually considered, while the consequences of introduction 
of redundant nodes are not properly addressed or not addressed at all. Simply increasing 
redundancy of subsystems might not be sufficient to increase fault tolerance. 

In this project we have shown that introduction of the redundant nodes can cause possibly 
catastrophic or costly problems in functioning of the embedded systems. The redundant nodes 
might introduce new synchronization problems and can cause an overhead resulting in 
computations not being performed within strict deadlines, and thus have unforeseen 
consequences for safety. 

The main contribution of this paper is not only identifying the problems related to 
introduction of redundant nodes in embedded systems but also proposing some solutions. We 
solved the “redundant nodes problem” by expanding the safety shell technique originally 
introduced in [12]. The “shell” concept is based on development of a “guard” for each 
physical subsystem. Our shell had not only a low level guard but also generated proper fault 
signal for the controller, e.g.,  “not alive” or  “alive”, informing whether the correct 
communication between subsystems is still  taking place. 

It was shown that there exist methods to construct the correct modified model with 
redundant nodes in such a way as to preserve normal behavior during the specified fault 
scenarios.  The next step in this work is to formalize this modification by transformation 
rules. More specifically, we are working on defining transformation rules so that the models 
can be transformed using well defined templates, such as, “alive”/”not_alive”  template. 
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