
JAISCR, 2022, Vol. 12, No. 2, pp. 135

HANDLING REALISTIC NOISE IN MULTI-AGENT
SYSTEMS WITH SELF-SUPERVISED LEARNING AND

CURIOSITY

Márton Szemenyei∗, Patrik Reizinger

Department of Control Engineering and Information Technology,
Budapest University of Technology and Economics,

1117, Budapest, Magyar Tudosok krt. 2.

∗E-mail: szemenyei.marton@vik.bme.hu

Submitted: 27th September 2021; Accepted: 18th December 2021

Abstract

1Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go
beyond observations with simple noise; nonetheless, real scenarios induce more elaborate
vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we
propose a lightweight, 2D environment for robot soccer and autonomous driving that can
emulate the above discrepancies. Besides establishing a benchmark for accessible multi-
agent reinforcement learning research, our work addresses the challenges the simulator
imposes. For handling realistic noise, we use self-supervised learning to enhance scene
reconstruction and extend curiosity-driven learning to model longer horizons. Our exten-
sive experiments show that the proposed methods achieve state-of-the-art performance,
compared against actor-critic methods, ICM, and PPO.
Keywords: deep reinforcement learning, multi-agent environment, autonomous driving,
robot soccer, self-supervised learning

1 Introduction

Reinforcement learning has undergone un-
precedented evolution, matching or even surpassing
human abilities in, e.g., computer games [31]. As
benchmarks developed from a single-paper/single-
task version to standardized suites with stable in-
terfaces [2, 10], reinforcement learning applications
skyrocketed. The environments also became more
complex: simulators now often use 3D physics en-
gines [1, 13].

The above trend focuses on idealized scenarios;
it usually neglects modeling realistic failures, such

as partial observations, hidden objects and classifi-
cation errors. Although we accept that this trend
benefits progress, real-world applications require
more focus on robustness. When the agents can
receive observations with realistic noise, they can
adapt to such situations. We provide the means to
do this by developing a simulator for robot soc-
cer and urban autonomous driving with a focus
on realistic observations and make the back-end
lightweight by using a 2D physics engine and sim-
ulated object detection – ensuring fast simulations
and i.i.d. data collection. This results in an accessi-
ble solution for robustness research.

1The research reported in this paper and carried out at BME has been supported by the NRDI Fund (TKP2020 NC, Grant
No. BME-NC) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and
Technology.

10.2478/jaiscr-2022-0009
 – 148

136 Márton Szemenyei, Patrik Reizinger

We also propose novel neural architectures for
these environments to handle the additional com-
plexity. An efficient attention mechanism captures
temporal and inter-object relations, self-supervised
learning [16, 24] incentivizes the agent’s localiza-
tion and state reconstruction capabilities against
failures of the vision system, and curiosity-driven
exploration [18, 3] constitutes our long-term/multi-
step prediction strategy, which is our contribution
extending short-horizon algorithms [18, 19].

Our contributions can be summarized as fol-
lows:

1. We develop highly efficient and accessible
multi-agent environments to simulate the fail-
ures of processing pipelines.

2. We design a neural architecture to address ob-
servations with realistic noise.

3. We propose self-supervised approaches to ex-
tract information about other agents and dy-
namic objects.

4. We extend the paradigm of curiosity-driven in-
trinsic motivation for longer time horizons.

As part of the evaluation, we benchmark
our simulator against actor-critic networks [15],
Proximal Policy Optimization (PPO) [23], and the
Intrinsic Curiosity Module (ICM) [18]. To reduce
the effect of random seed selection, we evaluate
all methods with ten different random seeds, eight
parallel environments, and compare the rewards via
statistical testing.

2 Related work

As we are interested in advancing multi-agent
deep reinforcement learning systems, we review
the relevant work that contributed to achieving
(super)human-level performance in computer vi-
sion [21, 20] and reinforcement learning [15, 31,
18]. We also discuss self-supervised learning, pro-
viding a context for our proposal.

2.1 Reinforcement Learning

We focus on model-based algorithms as they
open the door to handle credit assignment. Namely,

an intrinsic reward can be formulated to guide the
agent when the external reward is sparse.

This helps learning and even enables self-play,
as in the World Models [9] paper. Learning a
model also enables faster training (models can ex-
ploit GPUs, whereas simulators usually run on the
CPU), a safer process (no interaction with the real
world), and more intuitive debugging (as scientist
can use the model to analyze the agent).

Another paradigm is curiosity-driven learn-
ing [18, 3], where the intrinsic reward incentivizes
the agent to explore its environment and to model
it better – the ensemble version is called disagree-
ment [19]. A large-scale study [3] shows that cu-
riosity enables learning without extrinsic rewards,
but also improves performance if applied together.

We have extended curiosity-driven learn-
ing in [22] with the attention mecha-
nism [30]: an adaptive reward, called
Rational Curiosity Module (RCM), improved the
performance in Atari [2] and multi-agent environ-
ments [28].

Figure 1. The RCM loss [22]. ϕ stands for
features, ·̂ for predictions, and the circle in the

Attention block indicates conditioning

The authors argue that not all features are im-
portant at every time step: the RCM loss (Figure 1)
uses attention to focus on a feature subspace; these
are selected by conditioning (denoted by a circle)
on the features of the next time step ϕ(st+1).

We have shown the equivalence of RCM with
adaptive weighted least squares [28], namely:

JFWD,RCM =
1
N

eT
t+1et+1 (1)

et+1 =
√

W
(
ϕ(st+1)− ϕ̂(st+1)

)
, (2)

where W stands for the weights of the Attention net-
work, as in [28].

Multi-agent tasks increase the complexity of the
credit assignment problem; to learn the contribu-

137Márton Szemenyei, Patrik Reizinger

We also propose novel neural architectures for
these environments to handle the additional com-
plexity. An efficient attention mechanism captures
temporal and inter-object relations, self-supervised
learning [16, 24] incentivizes the agent’s localiza-
tion and state reconstruction capabilities against
failures of the vision system, and curiosity-driven
exploration [18, 3] constitutes our long-term/multi-
step prediction strategy, which is our contribution
extending short-horizon algorithms [18, 19].

Our contributions can be summarized as fol-
lows:

1. We develop highly efficient and accessible
multi-agent environments to simulate the fail-
ures of processing pipelines.

2. We design a neural architecture to address ob-
servations with realistic noise.

3. We propose self-supervised approaches to ex-
tract information about other agents and dy-
namic objects.

4. We extend the paradigm of curiosity-driven in-
trinsic motivation for longer time horizons.

As part of the evaluation, we benchmark
our simulator against actor-critic networks [15],
Proximal Policy Optimization (PPO) [23], and the
Intrinsic Curiosity Module (ICM) [18]. To reduce
the effect of random seed selection, we evaluate
all methods with ten different random seeds, eight
parallel environments, and compare the rewards via
statistical testing.

2 Related work

As we are interested in advancing multi-agent
deep reinforcement learning systems, we review
the relevant work that contributed to achieving
(super)human-level performance in computer vi-
sion [21, 20] and reinforcement learning [15, 31,
18]. We also discuss self-supervised learning, pro-
viding a context for our proposal.

2.1 Reinforcement Learning

We focus on model-based algorithms as they
open the door to handle credit assignment. Namely,

an intrinsic reward can be formulated to guide the
agent when the external reward is sparse.

This helps learning and even enables self-play,
as in the World Models [9] paper. Learning a
model also enables faster training (models can ex-
ploit GPUs, whereas simulators usually run on the
CPU), a safer process (no interaction with the real
world), and more intuitive debugging (as scientist
can use the model to analyze the agent).

Another paradigm is curiosity-driven learn-
ing [18, 3], where the intrinsic reward incentivizes
the agent to explore its environment and to model
it better – the ensemble version is called disagree-
ment [19]. A large-scale study [3] shows that cu-
riosity enables learning without extrinsic rewards,
but also improves performance if applied together.

We have extended curiosity-driven learn-
ing in [22] with the attention mecha-
nism [30]: an adaptive reward, called
Rational Curiosity Module (RCM), improved the
performance in Atari [2] and multi-agent environ-
ments [28].

Figure 1. The RCM loss [22]. ϕ stands for
features, ·̂ for predictions, and the circle in the

Attention block indicates conditioning

The authors argue that not all features are im-
portant at every time step: the RCM loss (Figure 1)
uses attention to focus on a feature subspace; these
are selected by conditioning (denoted by a circle)
on the features of the next time step ϕ(st+1).

We have shown the equivalence of RCM with
adaptive weighted least squares [28], namely:

JFWD,RCM =
1
N

eT
t+1et+1 (1)

et+1 =
√

W
(
ϕ(st+1)− ϕ̂(st+1)

)
, (2)

where W stands for the weights of the Attention net-
work, as in [28].

Multi-agent tasks increase the complexity of the
credit assignment problem; to learn the contribu-

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

Figure 2. The RoboCup (left) and Driving (right) environments.

tions of each agent, Foerster et. al. [7] proposes a
counterfactual approach.

2.2 Self-Supervised Learning

Self-supervised learning enables learning repre-
sentations without labeling data: by creating inter-
mediate tasks, labels are automatically generated.
The paradigm’s advantages include improved gen-
eralization, faster convergence, and a considerably
smaller data set size.

Computer vision has revolutionized self-
supervised learning: applications include distor-
tion [6] or rotation [8] correction, image inpaint-
ing [4], and colorization [35]. Generative models
(e.g., Autoencoders [36], World Models [9], and
Bidirectional GANs [5]) also have a self-supervised
interpretation.

For video, tracking objects [33], colorizing
video [32], and predicting video frame order or the
”flow of time” [34] were handled by self-supervised
methods.

Reinforcement learning is no exception: curios-
ity forms sequence-based self-supervised learning,
since it predicts the next state and the action lead-
ing to that state. Grasp2Vec [11] learns an object-
centric representation using metric learning; Time
Contrastive Networks [25] learn to embed frames in
multi-view videos, enforcing similarity of different
perspectives’ representations; Imagined Goals [17]
explore the environment early on by defining addi-
tional goals.

3 Environments

In this section, we describe the two cooperative-
competitive environments: 1) RoboCup for robot
soccer and 2) Driving for autonomous vehicles in
an urban scenario, introduced in [28]).

We decided to deviate from the direction of the
literature: instead of 3D physics simulation [10, 13]
or complicated tasks (such as StarCraft II [31]), our
focus was modeling realistic noise and the failures
of vision pipelines (e.g. false positive and false neg-
ative sightings).

Our contribution is presented in the form of
two OpenAI Gym-compatible [2] tasks (Figure 2),
where we abstract away from realistic graphics and
low-level physics (such as robot joint control), en-
suring fast experimentation. We emphasize that our
solution is among the few for multi-agent systems.
While Gym-compatible simulators exist for robot
soccer [14], these provide rendering and focus on
low-level actions, while our environment is aimed
at learning high-level strategies.

Both environments offer high-level action
spaces; For the driving environment, the ac-
tion space consists of two discrete actions
[gas/break, le f t/right], while the robot soccer
environment offers four possible discrete actions:
[step, turn, kick, turn head]. In the following, we
elaborate the description of the observation and re-
ward systems.

3.1 Observations

To maintain efficiency, the environment pro-
vides abstract observations that an object detec-
tion algorithm would extract; failure emulation is

138 Márton Szemenyei, Patrik Reizinger

still possible via partial observations, meaning lim-
ited object visibility; constraining factors are agent-
object distance and field of view (the latter only for
robot soccer).

In partial observation mode, the environment
provides a list of seen objects in the given agent’s
field of view. Each object observation includes the
objects location relative to the agent, its orientation,
and other object-specific properties that can be de-
termined visually (such as the team of a robot, or
whether it’s fallen).

The robot soccer environment can optionally
emulate semantic segmentation by image-based ob-
servations (i.e., generating semantically labeled im-
ages for both robot cameras). Although the detected
objects are in the agent’s coordinate system, but lo-
calization should happen in absolute coordinates,
the task is non-trivial.

Both observation modes support failure emula-
tion including false negatives, false positives, mis-
classifications, and inaccurate localization. Objects
may also be lost due to occlusion. This function-
ality supports two modes: 1) random mode: errors
occur with a fixed, adjustable probability, 2) realis-
tic mode: the probability of random errors depends
on observation reliability:

1. The magnitude of position noise and the prob-
ability of false negatives increases with the dis-
tance from the agent.

2. False negatives are more likely when two or
more objects are nearby or at the edge of the
field of view.

3. Visually similar objects (such as balls and
penalty crosses or vehicles and obstacles) are
more likely to be confused than dissimilar ones.

4. False-positive sightings are more likely in cer-
tain places (such as false-positive balls at the feet
of other nearby robots).

The above list was assembled based on our pre-
vious experiences in neural network-based object
detection in similar environments [26, 29, 27].

3.2 Reward system

We define three reward categories: 1) primary,
2) rule-based, and 3) auxiliary.

Primary rewards are scored for succeeding
(scoring in RoboCup, or reaching the destination in
Driving).

Rule-based rewards make the agents avoid
breaking rules with negative scores: pushing each
other or walking off the field are erratic in robot
soccer, whereas crashing or leaving the road are pe-
nalized in autonomous driving.

Auxiliary rewards incentivize actions leading to
long-term success. As such moves are usually not
optimal in the short-term, these rewards are smaller
than the primary or rule-based ones. When a robot
moves towards the ball, or kicks it towards the op-
ponent’s goal, it gets an auxiliary reward. This type
can also be negative: if a car drives in the opposite
lane, it gets penalized.

Observation rewards are a special case of aux-
iliary rewards for robot soccer: robots are incen-
tivized to observe several different objects in a given
time interval (leading to moving the robot’s head).
Detecting the ball is worth the most, followed by
robots and field objects.

4 Model

This section introduces the model architecture
we designed for both robot soccer and autonomous
driving. Due to diverse failure modes (false posi-
tives, false negatives, misclassifications), we could
not utilize the results from the literature – the few
environments providing agent-centric partial obser-
vations only account for occlusion [1].

Our additional goals also underlined a new
agent design: to handle a variable amount
of detections, we designed a novel encoder
(subsection 4.1); to capture long-term depen-
dencies, we deployed the attention mecha-
nism (subsection 4.2); to make learning more
efficient, we applied self-supervised learning
(subsection 4.3). At the end of this section, we
provide an overview of the architecture (Figure 6)
and the training algorithm (Algorithm 1).

The RoboCup environment imposes a further
constraint: as the Nao robots’ control is relatively
slow (a single action takes 500 − 1000 ms), rein-
forcement learning algorithms need to adapt to this
time delay. In practice, this means that after taking
a single action, multiple observations are received –

139Márton Szemenyei, Patrik Reizinger

still possible via partial observations, meaning lim-
ited object visibility; constraining factors are agent-
object distance and field of view (the latter only for
robot soccer).

In partial observation mode, the environment
provides a list of seen objects in the given agent’s
field of view. Each object observation includes the
objects location relative to the agent, its orientation,
and other object-specific properties that can be de-
termined visually (such as the team of a robot, or
whether it’s fallen).

The robot soccer environment can optionally
emulate semantic segmentation by image-based ob-
servations (i.e., generating semantically labeled im-
ages for both robot cameras). Although the detected
objects are in the agent’s coordinate system, but lo-
calization should happen in absolute coordinates,
the task is non-trivial.

Both observation modes support failure emula-
tion including false negatives, false positives, mis-
classifications, and inaccurate localization. Objects
may also be lost due to occlusion. This function-
ality supports two modes: 1) random mode: errors
occur with a fixed, adjustable probability, 2) realis-
tic mode: the probability of random errors depends
on observation reliability:

1. The magnitude of position noise and the prob-
ability of false negatives increases with the dis-
tance from the agent.

2. False negatives are more likely when two or
more objects are nearby or at the edge of the
field of view.

3. Visually similar objects (such as balls and
penalty crosses or vehicles and obstacles) are
more likely to be confused than dissimilar ones.

4. False-positive sightings are more likely in cer-
tain places (such as false-positive balls at the feet
of other nearby robots).

The above list was assembled based on our pre-
vious experiences in neural network-based object
detection in similar environments [26, 29, 27].

3.2 Reward system

We define three reward categories: 1) primary,
2) rule-based, and 3) auxiliary.

Primary rewards are scored for succeeding
(scoring in RoboCup, or reaching the destination in
Driving).

Rule-based rewards make the agents avoid
breaking rules with negative scores: pushing each
other or walking off the field are erratic in robot
soccer, whereas crashing or leaving the road are pe-
nalized in autonomous driving.

Auxiliary rewards incentivize actions leading to
long-term success. As such moves are usually not
optimal in the short-term, these rewards are smaller
than the primary or rule-based ones. When a robot
moves towards the ball, or kicks it towards the op-
ponent’s goal, it gets an auxiliary reward. This type
can also be negative: if a car drives in the opposite
lane, it gets penalized.

Observation rewards are a special case of aux-
iliary rewards for robot soccer: robots are incen-
tivized to observe several different objects in a given
time interval (leading to moving the robot’s head).
Detecting the ball is worth the most, followed by
robots and field objects.

4 Model

This section introduces the model architecture
we designed for both robot soccer and autonomous
driving. Due to diverse failure modes (false posi-
tives, false negatives, misclassifications), we could
not utilize the results from the literature – the few
environments providing agent-centric partial obser-
vations only account for occlusion [1].

Our additional goals also underlined a new
agent design: to handle a variable amount
of detections, we designed a novel encoder
(subsection 4.1); to capture long-term depen-
dencies, we deployed the attention mecha-
nism (subsection 4.2); to make learning more
efficient, we applied self-supervised learning
(subsection 4.3). At the end of this section, we
provide an overview of the architecture (Figure 6)
and the training algorithm (Algorithm 1).

The RoboCup environment imposes a further
constraint: as the Nao robots’ control is relatively
slow (a single action takes 500 − 1000 ms), rein-
forcement learning algorithms need to adapt to this
time delay. In practice, this means that after taking
a single action, multiple observations are received –

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

Figure 3. The encoder architecture. Here ·̂ is denotes that attention was applied to the embedded objects.

Figure 4. The Recurrent Temporal Attention (RTA) module (left: recurrent form, right: rolled out in time).

as the vision pipeline is considerably faster.

4.1 Encoder

The encoder (Figure 3) needs to learn a compact
representation from corrupted observations, while
also accounting for both intratemporal (within a
time step) and intertemporal (between time steps)
object interactions.

The first step is to embed each object with a
small Multi-Layer Perceptron (MLP); each object
type has its embedder network with same-sized out-
puts. Second, a self-attention layer (with weight
sharing) consumes the concatenated features to pre-
dict intratemporal dependencies – the presence or
relative position of objects can establish occlusion
or other failures.

Third, to learn intertemporal relationships, we
propose Recurrent Temporal Attention (RTA), an
Recurrent Neural Network (RNN) cell with multi-
head attention with sequences as observations. The
key point is that the output is fed back to the RTA
(Figure 4).

In practice, we need to pad all the input se-
quences to match the longest input to ensure that
no detections are lost due to false negatives. This
is because the length of the output sequence of the
attention module is the same as the length of the

target input sequence, so false negatives in some in-
puts can force the sequence to decrease in length.

However, false positives can still remain in
the sequence, since there is no mechanism to re-
move them. We address this by including a lin-
ear layer with sigmoid activation – a common prac-
tice [21, 20] for computing confidence scores. RTA
also uses bias vectors to ensure numerical stability
(in the softmax) when no objects are detected.

Finally, we compute a confidence-weighted av-
erage of the objects, resulting in a single embedding
vector.

4.2 Long-term forward prediction

One of our key contributions is that we extend
curiosity-driven reinforcement learning for longer
time horizons (up to the rollout length). Other
intrinsic rewards focus on short-horizons [18, 19]
– the World Models architecture [9] contains an
RNN, but - in our assessment - this differs from our
goal.

For brevity, we denote ϕ(st) as ϕt in this section.

Using step-wise predictions of p
(
ϕ̂t+i|ϕt+i−1,at+i−1

)
would be equivalent to applying the ICM [18] mul-
tiple times, assuming Markovian state dynamics.

However, the proposed method reuses predic-

140 Márton Szemenyei, Patrik Reizinger

tions of ϕ̂t+i for future feature distributions (note
the hat symbol denoting predicted values right to
the conditioning bar)

p
(
ϕ̂t+i|ϕt , ϕ̂t+1, . . . ϕ̂t+i−1,at+i−1

)
. (3)

The advantage of this approach is that the agent is
forced to model longer dependencies, but this naive
formulation comes at a cost: feeding back predic-
tions accumulates the error, leading to potentially
disastrous performance.

Our solution is to adapt the loss formulation
(Figure 5): we use the squared loss as in [18], but
we make it adaptive with the attention mechanism
as in [22]. This way, the network is able to provide
an intrinsic reward for longer horizons, while com-
pensating for the accumulating prediction error.

We calculate each ϕ̂t+i with MLPs so we do not
suffer from slower RNNs, then the squared losses
Wi are weighted based on the previous weights – our
conjecture is that by identifying the ”error charac-
teristics” of the previous step, the predictions will
be more reliable. Note that although feature pre-
diction is not sequential, calculating the weighting
factors is.

The modified loss can be formulated as follows:

JLTP =
1
N

t+N+1

∑
i=t+1

JLTP,i (4)

JLTP,i = Attention(Wi)⊙
[
ϕi − ϕ̂i

]2
(5)

Wi =

{[
ϕi−1 − ϕ̂i−1

]2
, i > t +1

1, i = t +1,
(6)

where LTP is a shorthand for Long-Term Prediction,
and Wi has the same dimensionality as ϕt (⊙ de-
notes the Hadamard-product). As the input for the
first prediction is the ground-truth state, it is not
weighted.

4.3 Localization and reconstruction

The agents observe their environment in their
own coordinates, but successful learning requires
global localization (e.g. to not to score own goals).
Thus, we extend the learning objective with local-
ization and reconstruction objectives.

Localization deploys self-supervised learning
for predicting position and orientation in an abso-
lute sense (for robots with rotating heads this means

learning two orientations). Reconstruction aims for
learning about other dynamic objects seen during
the rollout: the reconstruction of the state vector
extracts absolute information and reduces position
noise – thus, accounting for false negatives and pos-
itives.

These two tasks are formulated as an object de-
tection problem: given inaccurate and faulty obser-
vations, the agents predict the position, orientation
and other relevant properties of themselves and dy-
namic objects. We use anchors, which are fixed
to the field, to predict multiple objects of the same
type – as in YOLO [21, 20]. To minimize the dis-
tance between objects and anchors, we selected the
Hungarian algorithm.

The localization and reconstruction heads are
trained in tandem with other parts of the archi-
tecture, using the ground truth data retrieved from
the environment. This amounts to a form of self-
supervised learning, where the agent can learn use-
ful representations of the input by learning to local-
ize and reconstruct. Notably, these heads can also
be pre-trained to speed up the convergence using
randomly generated data.

Algorithm 1. Training procedure for the pro-
posed model using RCM, Reconstruction and
Long-Term Prediction (LTP)

Result: Model losses
s0,obs0 ← env.reset();
while Episode running do

while Rollout number not reached do
Φt ← encoder(obst);
at ← actor(Φt);
Qt ← critic(Φt);
ât−1,Φ̂t+1 ← RCM(Φt ,Φt−1,at);
Φ̂t+2, . . . ,Φ̂t+N ← predictor(Φt);
ŝt ← reconstruction(Φt);
st+1,obst+1,rt ← env.step(at);

end
Φt+1 ← encoder(obst+1);
Lp ← Policy loss(r,a,Q);
Lv ←Value loss(r,Q);
LRCM ← RCM loss(Φ,Φ̂,a, â);
Lpred ← Prediction loss(Φ,Φ̂);
Lrecon ← Reconstruction loss(s, ŝ);

end

141Márton Szemenyei, Patrik Reizinger

tions of ϕ̂t+i for future feature distributions (note
the hat symbol denoting predicted values right to
the conditioning bar)

p
(
ϕ̂t+i|ϕt , ϕ̂t+1, . . . ϕ̂t+i−1,at+i−1

)
. (3)

The advantage of this approach is that the agent is
forced to model longer dependencies, but this naive
formulation comes at a cost: feeding back predic-
tions accumulates the error, leading to potentially
disastrous performance.

Our solution is to adapt the loss formulation
(Figure 5): we use the squared loss as in [18], but
we make it adaptive with the attention mechanism
as in [22]. This way, the network is able to provide
an intrinsic reward for longer horizons, while com-
pensating for the accumulating prediction error.

We calculate each ϕ̂t+i with MLPs so we do not
suffer from slower RNNs, then the squared losses
Wi are weighted based on the previous weights – our
conjecture is that by identifying the ”error charac-
teristics” of the previous step, the predictions will
be more reliable. Note that although feature pre-
diction is not sequential, calculating the weighting
factors is.

The modified loss can be formulated as follows:

JLTP =
1
N

t+N+1

∑
i=t+1

JLTP,i (4)

JLTP,i = Attention(Wi)⊙
[
ϕi − ϕ̂i

]2
(5)

Wi =

{[
ϕi−1 − ϕ̂i−1

]2
, i > t +1

1, i = t +1,
(6)

where LTP is a shorthand for Long-Term Prediction,
and Wi has the same dimensionality as ϕt (⊙ de-
notes the Hadamard-product). As the input for the
first prediction is the ground-truth state, it is not
weighted.

4.3 Localization and reconstruction

The agents observe their environment in their
own coordinates, but successful learning requires
global localization (e.g. to not to score own goals).
Thus, we extend the learning objective with local-
ization and reconstruction objectives.

Localization deploys self-supervised learning
for predicting position and orientation in an abso-
lute sense (for robots with rotating heads this means

learning two orientations). Reconstruction aims for
learning about other dynamic objects seen during
the rollout: the reconstruction of the state vector
extracts absolute information and reduces position
noise – thus, accounting for false negatives and pos-
itives.

These two tasks are formulated as an object de-
tection problem: given inaccurate and faulty obser-
vations, the agents predict the position, orientation
and other relevant properties of themselves and dy-
namic objects. We use anchors, which are fixed
to the field, to predict multiple objects of the same
type – as in YOLO [21, 20]. To minimize the dis-
tance between objects and anchors, we selected the
Hungarian algorithm.

The localization and reconstruction heads are
trained in tandem with other parts of the archi-
tecture, using the ground truth data retrieved from
the environment. This amounts to a form of self-
supervised learning, where the agent can learn use-
ful representations of the input by learning to local-
ize and reconstruct. Notably, these heads can also
be pre-trained to speed up the convergence using
randomly generated data.

Algorithm 1. Training procedure for the pro-
posed model using RCM, Reconstruction and
Long-Term Prediction (LTP)

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

Figure 5. The Long-term forward prediction module. The output of each MLP module is ϕ̂i+1, given ϕ̂i (or
ϕ(si)) as input. The ⊙ denotes the Hadamard-product.

Figure 6. The network architecture. The subscripts stat and dyn denote components (objects, encoder, and
features) for static and dynamic objects, respectively.ϕ(st) stands for features, at for actions, while A for

the advantage function; whereas ·̂ denotes predicted values.

142 Márton Szemenyei, Patrik Reizinger

5 Results

After discussing the training proce-
dure (subsection 5.1), we report the per-
formance of the proposed methods, bench-
marked against actor-critic [15], ICM [18], and
PPO [23] (subsection 5.4). Besides the mer-
its of LTP (subsection 5.2) and reconstruction
(subsection 5.3), we also detail the computational
cost of the simulator (subsection 5.5) – supporting
the claim of an accessible tool.

5.1 Training

The agent of section 4 was compared against
A2C, ICM, PPO, and combinations thereof. We
used the partial observation mode with realistic
noise (of magnitude 1.0), eight parallel environ-
ments, two agents for Driving, and two agents in
each team for RoboCup. The best average reward
(within a ten-episode moving window) served as
our performance metric; additionally, the best av-
erage observation reward (specific to RoboCup, see
subsection 3.2) was calculated.

The baseline agent was an A2C [15] architec-
ture extended with the RCM module (denoted by
RCM), while ’our’ method included the LTP ex-
tension as well (Pred). We report the performance
when combining LTP and reconstruction (Recon) –
as Driving did not benefit from reconstruction due
to the 360◦ vision of vehicles and the irrelevance
of global localization, we benchmarked the Recon
model only in RoboCup.

For reducing variance, we averaged each con-
figuration over eight seeds and carried out a
Bayesian t-test to report the results’ significance –
we opted for the independent samples version from
BEST [12], since having the same seed does not
necessarily make two runs comparable. We report
the 95% Confidence Interval (CI) on the difference
of means, the mean of the CI, and the Probability of
Improvement (PoI) – PoI describes the probability
of a positive effect size, i.e. the proposal’s superior-
ity.

A clear limitation of our work is the lack of so-
phisticated hyperoptimization: the extensive com-
parisons and the limited hardware resources con-
strained us. Nonetheless, we manually tuned the
hyperparameters (Table 1) on the same environ-

ments, but on different tasks – their purpose was
to show convergence while avoiding information
”leaks” about the real task.

Table 1. Training hyperparameters

Hyperparameter Value

Learning rate 10−4

Max gradient norm 0.5
Number of updates 60,000
Number of steps 240,000
Rollout size 6
ICM loss coeff. 10−2

Value loss coeff. 0.5
Entropy loss coeff. 0.1
Forward loss coeff. 10−2

Long-term Prediction loss coeff. 10−3

Reconstruction loss coeff. 10−2

5.2 Effects of LTP

We compared LTP in three scenarios: Driving
using partial and RoboCup with both full and partial
observations. For these tests, the same architecture
with LTP turned off was used as baseline.

Table 2. Improvements in the mean reward by
using LTP. ∆R is the expected improvement of the
mean reward, while the Confidence Intervals (CI)
and the Probability of Improvement (PoI) are also

given. Rb is the mean reward of the baseline model.

Env ∆R 95% CI PoI Rb

Robo 0.18 [0.01,0.35] 97.4% 13.06
Robo (Full) 0.47 [0.14,0.76] 99.7% 19.28
Driving 3.51 [0.89,5.89] 99.55% 22.96

We can conclude that LTP significantly outper-
formed the baseline (Table 2) in all cases: the effect
in RoboCup was small, whereas in Driving it was
15%. Although the effect size is small, the effect
of LTP on the run time of the training is not no-
table (< 1%), as the training process is highly CPU-
bound by the environment.

143Márton Szemenyei, Patrik Reizinger

5 Results

After discussing the training proce-
dure (subsection 5.1), we report the per-
formance of the proposed methods, bench-
marked against actor-critic [15], ICM [18], and
PPO [23] (subsection 5.4). Besides the mer-
its of LTP (subsection 5.2) and reconstruction
(subsection 5.3), we also detail the computational
cost of the simulator (subsection 5.5) – supporting
the claim of an accessible tool.

5.1 Training

The agent of section 4 was compared against
A2C, ICM, PPO, and combinations thereof. We
used the partial observation mode with realistic
noise (of magnitude 1.0), eight parallel environ-
ments, two agents for Driving, and two agents in
each team for RoboCup. The best average reward
(within a ten-episode moving window) served as
our performance metric; additionally, the best av-
erage observation reward (specific to RoboCup, see
subsection 3.2) was calculated.

The baseline agent was an A2C [15] architec-
ture extended with the RCM module (denoted by
RCM), while ’our’ method included the LTP ex-
tension as well (Pred). We report the performance
when combining LTP and reconstruction (Recon) –
as Driving did not benefit from reconstruction due
to the 360◦ vision of vehicles and the irrelevance
of global localization, we benchmarked the Recon
model only in RoboCup.

For reducing variance, we averaged each con-
figuration over eight seeds and carried out a
Bayesian t-test to report the results’ significance –
we opted for the independent samples version from
BEST [12], since having the same seed does not
necessarily make two runs comparable. We report
the 95% Confidence Interval (CI) on the difference
of means, the mean of the CI, and the Probability of
Improvement (PoI) – PoI describes the probability
of a positive effect size, i.e. the proposal’s superior-
ity.

A clear limitation of our work is the lack of so-
phisticated hyperoptimization: the extensive com-
parisons and the limited hardware resources con-
strained us. Nonetheless, we manually tuned the
hyperparameters (Table 1) on the same environ-

ments, but on different tasks – their purpose was
to show convergence while avoiding information
”leaks” about the real task.

Table 1. Training hyperparameters

Hyperparameter Value

Learning rate 10−4

Max gradient norm 0.5
Number of updates 60,000
Number of steps 240,000
Rollout size 6
ICM loss coeff. 10−2

Value loss coeff. 0.5
Entropy loss coeff. 0.1
Forward loss coeff. 10−2

Long-term Prediction loss coeff. 10−3

Reconstruction loss coeff. 10−2

5.2 Effects of LTP

We compared LTP in three scenarios: Driving
using partial and RoboCup with both full and partial
observations. For these tests, the same architecture
with LTP turned off was used as baseline.

Table 2. Improvements in the mean reward by
using LTP. ∆R is the expected improvement of the
mean reward, while the Confidence Intervals (CI)
and the Probability of Improvement (PoI) are also

given. Rb is the mean reward of the baseline model.

Env ∆R 95% CI PoI Rb

Robo 0.18 [0.01,0.35] 97.4% 13.06
Robo (Full) 0.47 [0.14,0.76] 99.7% 19.28
Driving 3.51 [0.89,5.89] 99.55% 22.96

We can conclude that LTP significantly outper-
formed the baseline (Table 2) in all cases: the effect
in RoboCup was small, whereas in Driving it was
15%. Although the effect size is small, the effect
of LTP on the run time of the training is not no-
table (< 1%), as the training process is highly CPU-
bound by the environment.

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

Figure 7. Long-Term Prediction (LTP) in
RoboCup: filled circles represent ground truth,
crosses represent observations, and the empty

circles stand for the LTP predictions

Independent from the effect size, (LTP) had an-
other advantage: it provided stable means for the
agent to reconstruct the scene from noisy observa-
tions (Figure 5).

5.3 Effects of localization and reconstruc-
tion

The Recon agent was pre-trained with random,
rollout-sized sequences – as pre-training can im-
prove convergence times significantly and the data
is easy to generate. We measured the success of
pre-training with the Average Precision (AP) score
at different distance thresholds (Table 3); to put the
accuracy in perspective, the soccer field is 9×6 me-
ters.

Table 3. The Average Precision (AP) achieved for
localization and reconstruction.

Distance threshold 25 cm 50 cm 1 m

Localization 83% 100% 100%
Reconstruction 54% 70% 92%

Localization clearly outperformed reconstruc-
tion: as reconstruction (dynamic objects’ absolute
position) depends on localization (agents’ orienta-
tion and position), a small error in the latter can
considerably deteriorate the performance of the for-
mer.

We measured the performance of the local-
ization and reconstruction modules (Recon) in
RoboCup with partial observations (Table 4). As
the model includes LTP, we compared against the
baseline (RCM) and its extended version (includ-
ing LTP, denoted as Pred) to account for the poten-
tial improvements introduced by long-term forward
prediction.

Table 4. Results of the Bayesian t-test.

Comparison 95% CI Mean PoI Rb

RCM vs Recon [2.22,2.6] 2.41 100% 13.06
Pred vs Recon [2.01,2.44] 2.23 100% 13.25

The conclusion is clear: Recon significantly
outperformed both RCM and Pred. Indeed, the dif-
ference between both baselines was negligible com-
pared to the 19% improvement provided by Recon.

The same comparisons with the observation re-
ward (Table 5) highlighted how important localiz-
ing relevant objects is, resulting in a significant gain
of 8%.

Table 5. Results of the Bayesian t-test for the
observation rewards.

Comparison 95% CI Mean PoI Rb

RCM vs Recon [0.36,0.58] 0.47 100% 5.94
Pred vs Recon [0.35,0.58] 0.46 100% 5.95

The improvements are undoubtedly promising,
but there is still a long way to go: although our pro-
posal beat the random policy, human players (the
authors) easily outperformed the agent (Table 6).
Finally, training curves are presented in Figure 8.

Table 6. Comparison against the random and the
human baselines.

Baseline Random Human Pred Recon

RoboCup 5.75 22.57 13.25 15.48
Driving 0.7 42.3 26.47 N/A

5.4 Ablation study with PPO

This section discusses the result of our ablation
study, where we used PPO.

Using curiosity-driven exploration had negligi-
ble – in some cases negative – effects: a clear con-

144 Márton Szemenyei, Patrik Reizinger

Figure 8. The RoboCup (left) and Driving (right) training curves. The y axis displays the maximal reward
an agent achieved in a particular episode normalized, so that starting rewards would be zero.

sequence of incentivizing exploration and reporting
the extrinsic reward.

For Driving, RCM and the LTP (Table 7) signif-
icantly improved the performance; nonetheless, the
effect size was relatively minor.

In RoboCup (Table 8), each combination im-
proved the reward, except when only curiosity-
driven exploration was used. Notably, the use of
Recon meant the largest effect size.

5.5 Training times

We report the execution times of our multi-
agent simulator to show that we created a
lightweight benchmark suite. Running experiments
in both environments is possible even with mod-
est resources, as our test configuration shows: a
single Titan Xp GPU, an i7-9700K CPU, and 32
GB RAM were sufficient to achieve reasonable run
times (Table 9)–a single training used eight parallel
environments with four agents.

Table 9. Time to train agents with 4 agents per
environment, 8 environments in parallel

Env # of runs 1 episode 100k updates

Robo 1 29 s 20 h
Robo 4 67 s 47 h
Driving 1 17 s 5 h
Driving 4 35 s 10 h

An experiment with 100,000 updates took less
than one day, and running four times as many par-
allel experiments increased the run time by only
100− 145%; thus, fulfilling our aim of an efficient
simulator.

6 Conclusion

The main results of this paper are twofold: we
introduced a multi-agent simulator with novel func-
tionality, and we developed a reinforcement learn-
ing method with novel self-supervised and intrinsic
motivation solutions.

Our DynEnv simulator stands out by provid-
ing lightweight means for multi-agent research; a
single GPU suffices for running extensive experi-
ments. Moreover, it is capable of generating im-
perfect observations beyond including noise: the
options range from false positives and negatives to
misclassifications.

More challenging observations require a more
elaborate model: we address imperfect observations
by proposing self-supervised extensions for scene
reconstruction. Modelling long-term dependencies
was also crucial to improve performance; thus,
our contribution extends the curiosity paradigm for
long-term strategies via the Long-Term Prediction
(LTP) algorithm. The proposed methods are instru-
mental in surpassing state-of-the-art methods – in-
cluding ICM [18] or PPO [23].

145Márton Szemenyei, Patrik Reizinger

Figure 8. The RoboCup (left) and Driving (right) training curves. The y axis displays the maximal reward
an agent achieved in a particular episode normalized, so that starting rewards would be zero.

sequence of incentivizing exploration and reporting
the extrinsic reward.

For Driving, RCM and the LTP (Table 7) signif-
icantly improved the performance; nonetheless, the
effect size was relatively minor.

In RoboCup (Table 8), each combination im-
proved the reward, except when only curiosity-
driven exploration was used. Notably, the use of
Recon meant the largest effect size.

5.5 Training times

We report the execution times of our multi-
agent simulator to show that we created a
lightweight benchmark suite. Running experiments
in both environments is possible even with mod-
est resources, as our test configuration shows: a
single Titan Xp GPU, an i7-9700K CPU, and 32
GB RAM were sufficient to achieve reasonable run
times (Table 9)–a single training used eight parallel
environments with four agents.

Table 9. Time to train agents with 4 agents per
environment, 8 environments in parallel

Env # of runs 1 episode 100k updates

Robo 1 29 s 20 h
Robo 4 67 s 47 h
Driving 1 17 s 5 h
Driving 4 35 s 10 h

An experiment with 100,000 updates took less
than one day, and running four times as many par-
allel experiments increased the run time by only
100− 145%; thus, fulfilling our aim of an efficient
simulator.

6 Conclusion

The main results of this paper are twofold: we
introduced a multi-agent simulator with novel func-
tionality, and we developed a reinforcement learn-
ing method with novel self-supervised and intrinsic
motivation solutions.

Our DynEnv simulator stands out by provid-
ing lightweight means for multi-agent research; a
single GPU suffices for running extensive experi-
ments. Moreover, it is capable of generating im-
perfect observations beyond including noise: the
options range from false positives and negatives to
misclassifications.

More challenging observations require a more
elaborate model: we address imperfect observations
by proposing self-supervised extensions for scene
reconstruction. Modelling long-term dependencies
was also crucial to improve performance; thus,
our contribution extends the curiosity paradigm for
long-term strategies via the Long-Term Prediction
(LTP) algorithm. The proposed methods are instru-
mental in surpassing state-of-the-art methods – in-
cluding ICM [18] or PPO [23].

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

Table 7. Component ablation in the Driving environment for PPO. � stands for baseline, while �for
additional components in the comparison. Note that RCM is an extension of ICM.

PPO ICM RCM Pred 95% CI Mean PoI

� � [−2.77,−0.29] −1.59 71.25%
� � [−0.38,2.01] 0.76 88.44%
� � � [0.48,2.56] 1.50 99.69%
� � � [1.09,3.86] 2.45 99.94%
� � � � [1.92,4.36] 3.10 100%
� � � [−0.36,1.87] 0.80 91.56%

Table 8. Component ablation in the RoboCup environment for PPO. � stands for baseline, while �for
additional components in the comparison. Note that RCM is an extension of ICM.

PPO ICM RCM Pred Recon 95% CI Mean PoI

� � [−2.70,−0.89] −1.79 0.04%
� � [−4.17,−2.27] −3.24 0%
� � � [−0.54,0.96] 0.19 67.34%
� � � � [14.02,15.73] 14.90 100%
� � � [−2.41,−0.12] −1.23 2%
� � � � [1.12,2.87] 1.98 100%
� � � [2.53,4.15] 3.36 100%
� � � � � [15.74,17.70] 16.70 100%
� � � � [16.58,18.47] 17.53 100%

146 Márton Szemenyei, Patrik Reizinger

Although our experiments show clear improve-
ment, the comparison with human baselines also
emphasizes the need for further investigation if we
want to achieve superhuman performance. We hope
that our simulator becomes a basis for developing
new algorithms for multi-agent scenarios.

To make our work reproducible, the
environments are available as a Python
package (DynEnv), while the source is at
https://github.com/szemenyeim/DynEnv.

References
[1] Bowen Baker, Ingmar Kanitscheider, Todor M.

Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-
agent autocurricula. In 8th International Confer-
ence on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[2] Greg Brockman, Vicki Cheung, Ludwig Petters-
son, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. 6 2016.

[3] Yuri Burda, Harrison Edwards, Deepak Pathak,
Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learn-
ing. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[4] Carl Doersch, Abhinav Gupta, and Alexei A.
Efros. Unsupervised visual representation learning
by context prediction. May 2015.

[5] Jeff Donahue, Philipp Krahenbahl, and Trevor Dar-
rell. Adversarial feature learning. May 2016.

[6] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias
Springenberg, Martin Riedmiller, and Thomas
Brox. Discriminative unsupervised feature learn-
ing with exemplar convolutional neural networks.
6 2014.

[7] Jakob N. Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In
Sheila A. McIlraith and Kilian Q. Weinberger, edi-
tors, Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018,
pages 2974–2982. AAAI Press, 2018.

[8] Spyros Gidaris, Praveer Singh, and Nikos Ko-
modakis. Unsupervised representation learning by
predicting image rotations. March 2018.

[9] David Ha and Jürgen Schmidhuber. Recurrent
world models facilitate policy evolution. In Samy

Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 2455–2467, 2018.

[10] Matt Hoffman, Bobak Shahriari, John Aslanides,
Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer,
Fan Yang, Kate Baumli, Sarah Henderson, Alex
Novikov, Sergio Gómez Colmenarejo, Serkan
Cabi, Caglar Gulcehre, Tom Le Paine, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Fre-
itas. Acme: A research framework for distributed
reinforcement learning. 6 2020.

[11] Eric Jang, Coline Devin, Vincent Vanhoucke, and
Sergey Levine. Grasp2vec: Learning object repre-
sentations from self-supervised grasping. Proceed-
ings of The 2nd Conference on Robot Learning, in
PMLR 87:99-112 (2018), November 2018.

[12] John K. Kruschke. Bayesian estimation supersedes
the t test. Journal of Experimental Psychology:
General, 142(2):573–603, 2013.

[13] Siqi Liu, Guy Lever, Josh Merel, Saran Tunya-
suvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

[14] Felipe B. Martins, Mateus G. Machado, Hansen-
clever F. Bassani, Pedro H. M. Braga, and Edna S.
Barros. rsoccer: A framework for studying re-
inforcement learning in small and very small size
robot soccer. 6 2021.

[15] Volodymyr Mnih, Adrià Puigdomènech Badia,
Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference
Proceedings, pages 1928–1937. JMLR.org, 2016.

[16] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual rein-
forcement learning with imagined goals. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018,

147Márton Szemenyei, Patrik Reizinger

Although our experiments show clear improve-
ment, the comparison with human baselines also
emphasizes the need for further investigation if we
want to achieve superhuman performance. We hope
that our simulator becomes a basis for developing
new algorithms for multi-agent scenarios.

To make our work reproducible, the
environments are available as a Python
package (DynEnv), while the source is at
https://github.com/szemenyeim/DynEnv.

References
[1] Bowen Baker, Ingmar Kanitscheider, Todor M.

Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-
agent autocurricula. In 8th International Confer-
ence on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[2] Greg Brockman, Vicki Cheung, Ludwig Petters-
son, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. 6 2016.

[3] Yuri Burda, Harrison Edwards, Deepak Pathak,
Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learn-
ing. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[4] Carl Doersch, Abhinav Gupta, and Alexei A.
Efros. Unsupervised visual representation learning
by context prediction. May 2015.

[5] Jeff Donahue, Philipp Krahenbahl, and Trevor Dar-
rell. Adversarial feature learning. May 2016.

[6] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias
Springenberg, Martin Riedmiller, and Thomas
Brox. Discriminative unsupervised feature learn-
ing with exemplar convolutional neural networks.
6 2014.

[7] Jakob N. Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In
Sheila A. McIlraith and Kilian Q. Weinberger, edi-
tors, Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018,
pages 2974–2982. AAAI Press, 2018.

[8] Spyros Gidaris, Praveer Singh, and Nikos Ko-
modakis. Unsupervised representation learning by
predicting image rotations. March 2018.

[9] David Ha and Jürgen Schmidhuber. Recurrent
world models facilitate policy evolution. In Samy

Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 2455–2467, 2018.

[10] Matt Hoffman, Bobak Shahriari, John Aslanides,
Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer,
Fan Yang, Kate Baumli, Sarah Henderson, Alex
Novikov, Sergio Gómez Colmenarejo, Serkan
Cabi, Caglar Gulcehre, Tom Le Paine, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Fre-
itas. Acme: A research framework for distributed
reinforcement learning. 6 2020.

[11] Eric Jang, Coline Devin, Vincent Vanhoucke, and
Sergey Levine. Grasp2vec: Learning object repre-
sentations from self-supervised grasping. Proceed-
ings of The 2nd Conference on Robot Learning, in
PMLR 87:99-112 (2018), November 2018.

[12] John K. Kruschke. Bayesian estimation supersedes
the t test. Journal of Experimental Psychology:
General, 142(2):573–603, 2013.

[13] Siqi Liu, Guy Lever, Josh Merel, Saran Tunya-
suvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

[14] Felipe B. Martins, Mateus G. Machado, Hansen-
clever F. Bassani, Pedro H. M. Braga, and Edna S.
Barros. rsoccer: A framework for studying re-
inforcement learning in small and very small size
robot soccer. 6 2021.

[15] Volodymyr Mnih, Adrià Puigdomènech Badia,
Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference
Proceedings, pages 1928–1937. JMLR.org, 2016.

[16] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual rein-
forcement learning with imagined goals. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018,

HANDLING REALISTIC NOISE IN MULTI-AGENT SYSTEMS WITH . . .

NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 9209–9220, 2018.

[17] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar
Bahl, Steven Lin, and Sergey Levine. Visual re-
inforcement learning with imagined goals. July
2018.

[18] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros,
and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 2778–2787.
PMLR, 2017.

[19] Deepak Pathak, Dhiraj Gandhi, and Abhinav
Gupta. Self-supervised exploration via dis-
agreement. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 5062–5071.
PMLR, 2019.

[20] Joseph Redmon, Santosh Kumar Divvala, Ross B.
Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 779–788. IEEE Computer
Society, 2016.

[21] Joseph Redmon and Ali Farhadi. YOLO9000: bet-
ter, faster, stronger. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
6517–6525. IEEE Computer Society, 2017.

[22] Patrik Reizinger and Márton Szemenyei.
Attention-based curiosity-driven exploration
in deep reinforcement learning. In 2020 IEEE
International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2020, Barcelona,
Spain, May 4-8, 2020, pages 3542–3546. IEEE,
2020.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

[24] P. Sermanet, C. Lynch, J. Hsu, and S. Levine.
Time-contrastive networks: Self-supervised learn-
ing from multi-view observation. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 486–
487, 2017.

[25] Pierre Sermanet, Corey Lynch, Yevgen Chebo-
tar, Jasmine Hsu, Eric Jang, Stefan Schaal, and
Sergey Levine. Time-contrastive networks: Self-
supervised learning from video. 4 2017.

[26] Marton Szemenyei and Vladimir Estivill-Castro.
Real-time scene understanding using deep neural
networks for RoboCup SPL. In RoboCup 2018:
Robot World Cup XXII, pages 96–108. Springer
International Publishing, 2019.

[27] Márton Szemenyei and Vladimir Estivill-Castro.
Fully neural object detection solutions for robot
soccer. Neural Computing and Applications, 4
2021.

[28] Marton Szemenyei and Patrik Reizinger.
Attention-based curiosity in multi-agent re-
inforcement learning environments. In 2019
International Conference on Control, Artificial In-
telligence, Robotics & Optimization (ICCAIRO).
IEEE, 5 2019.

[29] Marton Szemenyei and Vladimir Estivill-Castro.
ROBO: Robust, fully neural object detection for
robot soccer. In RoboCup 2019: Robot World Cup
XXIII, pages 309–322. Springer International Pub-
lishing, 2019.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5998–
6008, 2017.

[31] Oriol Vinyals, Igor Babuschkin, Wojciech M.
Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Aga-
piou, Max Jaderberg, Alexander S. Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom L.
Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–
354, 2019.

148 Márton Szemenyei, Patrik Reizinger

[32] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi,
Sergio Guadarrama, and Kevin Murphy. Tracking
emerges by colorizing videos. 6 2018.

[33] Xiaolong Wang and Abhinav Gupta. Unsupervised
learning of visual representations using videos.
May 2015.

[34] Donglai Wei, Joseph Lim, Andrew Zisserman, and
William T Freeman. Learning and using the ar-

row of time. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, 6
2018.

[35] Richard Zhang, Phillip Isola, and Alexei A. Efros.
Colorful image colorization. March 2016.

[36] Richard Zhang, Phillip Isola, and Alexei A. Efros.
Split-brain autoencoders: Unsupervised learning
by cross-channel prediction. November 2016.

Márton Szemenyei received a Ph.D.
degree in the Discipline of Informatics
at the Budapest University of Technol-
ogy and Economics in 2021. Currently,
he is an assistant professor at the De-
partment of Control Engineering and
Information Technology at the same
university. His main research topics
include computer vision, deep learn-

ing and reinforcement learning. He has also published sev-
eral papers on the application of information technology to
environmental problems.

Patrik Reizinger has received the
B.Sc. and M.Sc. degrees in electrical
and electronics engineering in 2019
and 2021 at the Budapest University of
Technology and Economics (BUTE),
Hungary, and is currently pursuing
the Ph.D. degree at the University of
Tübingen. His research interests in-
clude artificial intelligence for com-

puter vision and control, reinforcement learning, and causal
discovery.

