Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Congo red fluorescence upon binding to macromolecules – a possible explanation for the enhanced intensity

Warianty tytułu
Języki publikacji
The present study attempts to explain the reason for the selective generation of an increase in intensity of Congo red (CR) fluorescence as an effect of the dye interacting with proteins and polysaccharides. This supramolecular dye, which creates ribbon-shaped micelles in aqueous solutions when excited with blue light (470 nm), presents low fluorescence with a maximum within the orange-red light range (approximately 600 nm). In the same conditions, CR-stained preparations of heat-denatured proteins, some native proteins (e.g. cell surface receptors) and cellulose show intense orange-red fluorescence when observed using a fluorescence microscope. The fluormetric measurements showed that the factors that cause the dissociation of the ribbon-shaped CR micelle – ethanol, urea, dimethyl sulfoxide (DMSO) and cholate – all contributed to a significant increase in the fluorescence intensity of the CR solutions. The fluorescence measurements of CR bound to the immunoglobulin light lambda (L λ) chain and soluble carboxymethyl cellulose (CMC) showed a fluorescence intensity which was many times higher. In the case of the denatured (65°C) immunoglobulin L λ chain, the fluorescence intensity significantly exceeded the values observed for the factors which break down the CR micelles. The dissociation of the ribbon-shaped micelles and the complexation of the monomeric CR form with polymers are two of the factors explaining the intense fluorescence of protein and polysaccharide preparations stained with CR.
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
  • Jagiellonian University Medical College, Chair of Medical Biochemistry, Krakow, Poland
  • Jagiellonian University Medical College, Chair of Medical Biochemistry, Krakow, Poland
  • Jagiellonian University Medical College, Chair of Medical Biochemistry, Krakow, Poland
  • Jagiellonian University Medical College, Chair of Medical Biochemistry, Krakow, Poland
  • 1. Lorenc-Grabowska E, Gryglewicz G. Adsorption characteristics of Congo red on coal- based mesoporous activated carbon. Dye Pigment 2007;74:34–40.
  • 2. Nilsson KP. Small organic probes as amyloid specific ligands – past and recent molecular scaffolds. FEBS Lett 2009;583: 2593–9.
  • 3. Klunk WE, Pettegrew JW, Abraham DJ. Quantitative evaluation of Congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 1989;37:1273–81.
  • 4. Klunk WE, Debnath ML, Pettegrew JW. Chrysamine-G binding to alzheimer and Ccntrol brain: autopsy study of a new amyloid probe. Neurobiol Aging 1995;16:541–8.
  • 5. Zemanek G, Rybarska J, Stopa B, Piekarska B, Spólnik P, Konieczny L, et al. Protein distorsion-derived mechanism of signal discrimination in monocytes revealed using Congo red to stain activated cells. Folia Histochem Cytobiol 2003;41:113–24.
  • 6. Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, et al. Intramolecular immunological signal hypothesis revived–structural background of signalling revealed by using Congo red as a specific tool. Mini Rev Med Chem 2015;14:1104–13.
  • 7. Roterman I, No KT, Piekarska B, Kaszuba J, Pawlicki R, Rybarska J, et al. Bis azo dyes–studies on the mechanism of complex formation with IgG modulated by heating or antigen binding. J Physiol Pharmacol 1993;44:213–32.
  • 8. Stopa B, Konieczny L, Piekarska B, Roterman I, Rybarska J, Skowronek M. Effect of self association of bis-ANS and bis-azo dyes on protein binding. Biochimie 1997;79:23–6.
  • 9. Stopa B, Piekarska B, Konieczny L, Rybarska J, Spólnik P, Zemanek G, et al. The structure and protein binding of amyloidspecific dye reagents. Acta Biochim Pol 2003;50:1213–27.
  • 10. Homocianu M, Airinei A, Dorohoi DO, Olariu I, Fifere N. Solvatochromic effects in the UV/vis absorption spectra of some pyridazinium ylides. Spectrochim Acta A 2011;82:355–9.
  • 11. Dorneanu PP, Homocianu M, Tigoianu IR, Airinei A, Zaltariov M, Cazacu M. Solvent effects on the photophysical properties of poly[1,4- dihydroxyanthraquinoneimine-1,3-bis(phenyleneester-methylene) tetramethyldisiloxane]. Spectrochim Acta A 2015;134:218–24.
  • 12. Glenner GG, Eanes ED, Page DL. The relation of the properties of Congo red-stained amyloid fibrils to the -conformation. J Histochem Cytochem 1972;20:821–6.
  • 13. Stopa B, Jagusiak A, Konieczny L, Piekarska B, Rybarska J, Zemanek G, et al. The use of supramolecular structures as protein ligands. J Mol Model 2013;19:4731–40.
  • 14. Roterman I, Król M, Nowak M, Konieczny L, Rybarska J, Stopa B, et al. Why Congo red binding is specific for amyloid proteins – model studies and a computer analysis approach. Med Sci Monit 2001;7:771–84.
  • 15. Kaszuba J, Konieczny L, Piekarska B, Roterman I, Rybarska J. Bis-azo dyes interference with effector activation of antibodies. J Physiol Pharmacol 1993;44:233–42.
  • 16. Piekarska B, Roterman I, Rybarska J, Koniczny L, Kaszuba J. The melting of native domain structure in effector activation of IgG studied by using Congo red as a specific probe. J Physiol Pharmacol 1994;45:147–62.
  • 17. Rybarska J, Konieczny L, Roterman I, Piekarska B. The effect of azo dyes on the formation of immune complexes. Arch Immunol Ther Exp (Warsz) 1991;39:317–27.
  • 18. Al-Thabaiti SA, Aazam ES, Khan Z, Bashir O. Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution. Spectrochim Acta A 2016;156:28–35.
  • 19. Edwards RA, Woody RW. Molecular orbital calculations of the optical properties of Congo Red and Cibacron Blue and their complexes with proteins. J Phys Chem 1983;87: 1329–37.
  • 20. Zemanek G, Konieczny L, Piekarska B, Rybarska J, Stopa B, Spólnik P, et al. Egg yolk platelet proteins from Xenopus laevis are amyloidogenic. Folia Histochem Cytobiol 2002;40: 311–8.
  • 21. Zemanek G, Jagusiak A, Kusior D, Piekarska B, Spólnik P, Stopa B. Application of numerical analysis of fluorescence spectrum to identify properties of substances associating with Congo red micelle. Bio-Algorithms Med-Systems 2011;7:17–23.
  • 22. Sen S, Basdemir G. Diagnosis of renal amyloidosis using Congo red fluorescence. Pathol Int 2003;53:534–8.
  • 23. Clement CG, Truong LD. An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol 2014;45:1766–72.
  • 24. Piekarska B, Skowronek M, Rybarska J, Stopa B, Roterman I, Konieczny L. Congo red-stabilized intermediates in the lambda light chain transition from native to molten state. Biochimie 1996;78:183–9.
  • 25. Stopa B, Górny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, et al. Supramolecular ligands: monomer structure and protein ligation capability. Biochimie 1998;80:963–8.
  • 26. Mujumdar SR, Mujumdar RB, Grant CM, Waggoner AS. Cyaninelabeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconjug Chem 1996;7:356–62.
  • 27. Li W, Han YC, Zhang JL, Wang BG. Effect of ethanol on the aggregation properties of cetyltrimethylammonium bromide surfactant. Colloid J 2005;67:159–63.
  • 28. Murakami K. Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dye Pigment 2002;53:31–43.
  • 29. Kabir-ud-Din, Rub MA, Naqvi AZ. Self-association behavior of amitriptyline hydrochloride as a function of temperature and additive (inorganic salts and ureas) concentration. Colloids Surf B Biointerfaces 2011;82:87–94.
  • 30. Rezus YL, Bakker HJ. Effect of urea on the structural dynamics of water. Proc Natl Acad Sci USA 2006;103:18417–20.
  • 31. Mukerjee P, Ghosh AK. The effect of urea on methylene blue, its self-association, and interaction with polyelectrolytes in aqueous solution. J Phys Chem 1963;67:193–7.
  • 32. Spólnik P, Król M, Stopa B, Konieczny L, Piekarska B, Rybarska J, et al. Influence of the electric field on supramolecular structure and properties of amyloid-specific reagent Congo red. Eur Biophys J 2011;40:1187.
  • 33. Roda A, Hofmann AF, Mysels KJ. The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem 1983;258:6362–70.
  • 34. Kaur S, Rani S, Mahajan RK. Adsorption kinetics for the removal of hazardous dye Congo red by biowaste materials as adsorbents. J Chem 2013;2013:1–12.
  • 35. Zhegalova NG, He S, Zhou H, Kim DM, Berezin MY. Minimization of self-quenching fluorescence on dyes conjugated to biomolecules with multiple labeling sites via asymmetrically charged NIR fluorophores. Contrast Media Mol Imaging 2014;9:355–62.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.