PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of relaxation properties of digital materials obtained by means of PolyJet Matrix technology

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the stress relaxation of selected digital materials obtained by means of additive technology. A 5-parameter Maxwell-Wiechert model was used to describe the stress relaxation curves, allowing to obtain a very close fit. Anisotropy of properties was found due to the direction of sample printouts.
Rocznik
Strony
891--897
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Machine Technology and etrology, Kielce University of Technology, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
Bibliografia
  • [1] J. Bochnia, “Relaxation of materials obtained using polyjet technology,” in Engineering Mechanics 2017, 178–181 (2017).
  • [2] J. Kotlinski, “Mechanical properties of commercial rapid prototyping materials,” Rapid Prototyp. J. 20 (6), 499–510 (2014).
  • [3] J. Bochnia and S. Blasiak, “Anisotrophy of mechanical properties of a material which is shaped incrementally using polyjet technology,” in Engineering Mechanics 2016, 74–77 (2016).
  • [4] C. Kundera and J. Bochnia, “Investigating the stress relaxation of photopolymer O-ring seal models,” Rapid Prototyp. J. 20 (6), 533–540 (2014).
  • [5] J. Hiller and H. Lipson, “Design and analysis of digital materials for physical 3D voxel printing,” Rapid Prototyp. J. 15 (2), 137–149 (2009).
  • [6] S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyp. J. 8 (4), 248–257 (2002).
  • [7] K. Chockalingam, N. Jawahar, and U. Chandrasekhar, “Influence of layer thickness on mechanical properties in stereolithography,” Rapid Prototyp. J. 12 (2), 106–113 (2006).
  • [8] K. Puebla, K. Arcaute, R. Quintana, and R.B. Wicker, “Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography,” Rapid Prototyp. J. 18 (5), 374–388 (2012).
  • [9] P. Zelený, J. Šafka, and I. Elkina, “The mechanical characteristics of 3D printed parts according to the build orientation,” Appl. Mech. Mater. 474, 381–386 (2014).
  • [10] S. Adamczak, P. Zmarzly, T. Kozior, and D. Gogolewski, “Analysis of the dimensional accuracy of casting models manufactured by fused deposition modeling technology,” in Engineering Mechanics 2017, 66–69 (2017).
  • [11] H.F. Brinson and L.C. Brinson, Polymer Engineering Science and Viscoelasticity. New York: Springer Science+Business Media (2015).
  • [12] A. Hernandez-Jimenez, J. Hernandez-Santiago, A. Macias-Garcia, and J. Sanchez-Gonzalez, “Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model,” Polym. Test. 21 (3), 325–331 (2002).
  • [13] S. Blasiak, “Time-fractional heat transfer equations in modeling of the non-contacting face seals,” Int. J. Heat Mass Transf. 100, 79–88 (2016).
  • [14] V. Keryvin, M. Lan, A. Bourmaud, T. Parenteau, L. Charleux, and C. Baley, “Analysis of flax fibres viscoelastic behaviour at micro and nano scales,” Compos. PART A-APPLIED Sci. Manuf. 68, 219–225 (2015).
  • [15] L. Wang and Y. Han, “Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite,” Compos. Part A Appl. Sci. Manuf. 47 (1), 63–71 (2013).
  • [16] A.A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Modelling the viscoelastic stress relaxation of glass fibre reinforcements under constant compaction strain during composites manufacturing,” Compos. Part A Appl. Sci. Manuf. 43 (7), 1044–1052 (2012).
  • [17] S. Adamczak and J. Bochnia, “Estimating the approximation uncertaity for digital materias subjected to stress relaxation tests,” Metrol. Meas. Syst. 23 (4), SI, 545–553 (2016).
  • [18] K.-X. Hu and K.-Q. Zhu, “A note on fractional Maxwell model for PMMA and PTFE,” Polym. Test. 30 (7), 797–799 (2011).
  • [19] T. Hou and H. Chen, “Isothermal physical aging of PEEK and PPS investigated by fractional Maxwell model,” Polymer (Guildf). 53 (12), 2509–2518 (2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a065d311-67bb-4a04-9fce-7c2872a73d6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.