PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on temperature characteristics of multi-tower cable-stayed bridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Temperature effects have a great influence on the mechanical behavior of cable-stayed bridges, especially for long-span bridges, which have significant time-varying and spatial effects. In this paper, the temperature characteristics of multi-tower cable-stayed bridge are obtained by data acquisition with wireless acquisition module. The test results show that: the daily temperature-time curves of atmospheric temperature and structural temperature are similar to sine waves with obvious peaks and troughs; structure temperature and atmospheric temperature have obvious hysteresis; longitudinal displacement, transverse displacement and vertical of mid-span beam are negatively correlated with atmospheric temperature; the temperature distribution of the cable tower is not uniform, and the maximum temperature difference of the section is 23.7°C considering 98% of the upper limit value; the longitudinal, transverse and vertical displacement of cable tower and the cable force is negatively correlated with atmospheric temperature, and the relationship between cable force and atmospheric temperature is a cubic function rather than linear function.
Rocznik
Strony
535--548
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
  • Shandong High-speed Group Co. Ltd., Jinan, China
autor
autor
  • Shandong Expressway Jinan West Ring Road Co. Ltd, Jinan, China
autor
  • Shandong Expressway Jinan West Ring Road Co. Ltd, Jinan, China
Bibliografia
  • [1] M.P. Collins and D. Mitchell, Prestressed concrete structures. Prentice Hall Englewood Cliffs, NJ, 1991.
  • [2] L. Krkoska and M. Moravcik, “Monitoring of temperature gradient development of highway concrete bridge”, MATEC Web of Conferences, vol. 117, art. no. 00091, 2017, doi: 10.1051/matecconf/201711700091.
  • [3] R. Westgate, K.Y. Koo, and J. Brownjohn, “Effect of Solar Radiation on Suspension Bridge Performance”, Journal of Bridge Engineering, vol. 20, no. 5, 2014, doi: 10.1061/(ASCE)BE.1943-5592.0000668.
  • [4] E. Mirambell and A. Aguado, “Temperature and Stress Distributions in Concrete Box Girder Bridges”, Journal of Structural Engineering, vol. 116, no. 9, pp. 2388-2409, 1990, doi: 10.1061/(ASCE)0733-9445(1990)116:9(2388).
  • [5] N. Taysi and S. Abid, “Temperature Distributions and Variations in Concrete Box-Girder Bridges: Experimental and Finite Element Parametric Studies”, Advances in Structural Engineering, vol. 18, no. 4, pp. 469-486, 2015, doi: 10.1260/1369-4332.18.4.469.
  • [6] Y.H. Cao, J. Yim, Y. Zhao, and M.L. Wang, “Temperature effects on cable stayed bridge using health monitoring system: a case study”, Structural Health Monitoring, vol. 10, no. 5, pp. 523-537, 2011, doi: 10.1177/1475921710388970.
  • [7] J.H. Lee and I. Kalkan, “Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations”, Advances in Structural Engineering, vol. 15, no. 3, pp. 447-459, 2012, doi: 10.1260/1369-4332.15.3.447.
  • [8] Y. Xia, B. Chen, X.Q. Zhou, and Y.L. Xu, “Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior”, Structural Control & Health Monitoring, vol. 20, no. 4, pp. 560-575, 2013, doi: 10.1002/stc.515.
  • [9] Z.D. Xu and Z. Wu, “Simulation of the effect of temperature variation on damage detection in a longspan cable-stayed bridge”, Structural Health Monitoring, vol. 6, no. 3, pp. 177-189, 2007, doi: 10.1177/1475921707081107.
  • [10] A. Kuryłowicz-Cudowska, K. Wilde, and J. Chróścielewski, “Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations”, Construction and Building Materials, vol. 254, art. no. 119224, 2020, doi: 10.1016/j.conbuildmat.2020.119224.
  • [11] J. Liu, Y. Liu, L. Jiang, and N. Zhang, “Long-termfield test of temperature gradients on the composite girder of a long-span cable-stayed bridge”, Advances in Structural Engineering, vol. 22, no. 13, pp. 2785-2798, 2019, doi: 10.1177/1369433219851300.
  • [12] D.H. Yang, T.H. Yi, H.N. Li, and Y.F. Zhang, “Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge”, Measurement, vol. 115, pp. 249-257, 2018, doi: 10.1016/j.measurement.2017.10.036.
  • [13] S.H. Kim, S.J. Park, J.X. Wu, and J.H. Won, “Temperature variation in steel box girders of cable-stayed bridges during construction”, Journal of Constructional Steel Research, vol. 112, pp. 80-92, 2015, doi: 10.1016/j.jcsr.2015.04.016.
  • [14] O. Larsson and S. Thelandersson, “Estimating extreme values of thermal gradients in concrete structures”, Materials and Structures, vol. 44, pp. 1491-1500, 2011, doi: 10.1617/s11527-011-9714-0.
  • [15] J.X. Mao, H. Wang, D.M. Feng, T.Y. Tao, and W.Z. Zheng, “Investigation of dynamic properties of longspan cable-stayed bridges based on one-year monitoring data under normal operating condition”, Structural Control and Health Monitoring, vol. 25, no. 5, pp. 1-19, 2018, doi: 10.1002/stc.2146.
  • [16] Y.M. Zhang, H. Wang, Y. Bai, J.X. Mao, X.Y. Chang, and L.B. Wang, “Switching Bayesian dynamic linear model for condition assessment of bridge expansion joints using structural health monitoring data”, Mechanical Systems and Signal Processing, vol. 160, art. no. 107879, 2021, doi: 10.1016/j.ymssp.2021.107879.
  • [17] Y.M. Zhang, H. Wang, H.P. Wan, J.X. Mao, and Y.C. Xu, “Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model”, Structural Health Monitoring, vol. 20, no. 6, pp. 2936-2952, 2021, doi: 10.1177/1475921720977020.
  • [18] JTG D60-2015 General Code for Design Highway Bridges and Culverts. Ministry of Transport of the People’s Republic of China, 2015.
  • [19] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Savitzky-Golay Smoothing Filters”, Computers in Physics, vol. 4, pp. 669-672, 1990, doi: 10.1063/1.4822961.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a065af0f-41cb-4e80-acb7-e4cba13b8027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.