PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of laser texturing on the tribological behavior of titanium alloy Ti6Al4V in medical applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the tribological behavior of the Ti6Al4V ELI alloy subjected to laser texturization for medical purposes. Laser texturing enables one to observe specific patterns of the material surface at established depths. Microtexturing of the samples was performed using a 355 nm picosecond laser. The influence of the microtexturing process (depending on the process parameters) on the geometric parameters of the proposed laser texturing pattern was evaluated. Selected samples were subjected to tribological testing using the ball-on-plate technique in dry and lubricant-sliding methods (in Ringer solution). The wear properties were evaluated by comparing the coefficient friction, wear volumes, and wear ratio. A scanning electron microscope characterized the morphologies of the wear scar and the wear mechanism. The experimental results show that the surface texturing and the changes in microgrooves can reduce wear. The results indicate, that samples after laser texturing were characterized by 15% higher microhardness, compared to those in the initial state. It was found, a 26% reduction in friction coefficient and 29% in the wear volume compared to the smooth, untextured surface samples under lubricated conditions. The decrease in value of the coefficient friction and wear volume for the samples after the laser texturing process is an effect of synergistic of entrapped wear debris in micro-grooves and increased hardness for samples after laser textured.
Rocznik
Strony
art. no. e146, 2024
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland
  • University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Street, 41-800 Zabrze, Poland
Bibliografia
  • 1. Pereira CM, Pinto FFE, Nakagawa SA, Chung WT. Reconstruction with unconventional endoprostheses after resection of primary distal femoral bone tumors: implant survival and functional outcomes. Rev Bras Ortop. 2022;57:1030–8. https://doi.org/10.1055/S-0042-1748966.
  • 2. Luqman M, Seikh AH, Sarkar A, Ragab SA, Mohammed JA, Ijaz MF, Abdo HS. A comparative study of the electrochemical behavior of α and β Phase Ti6Al4V alloy in ringer’s solution. Crystals. 2020;10:190. https://doi.org/10.3390/cryst10030190.
  • 3. Iwabuchi A, Lee JW, Uchidate M. Synergistic effect of frettingwear and sliding wear of Co-alloy and Ti-alloy in Hanks’ solution. Wear. 2007;263:492–500. https://doi.org/10.1016/J.WEAR.2007.01.102.
  • 4. Beake BD, Liskiewicz TW. Comparison of nano fr̀etting and nano-scratch tests on biomedical materials. In: Beake BD, Liskiewicz TW, editors. of the tribology international. Amsterdam:Elsevier; 2013. p. 123–31.
  • 5. Babis GC, Stavropoulos NA, Sasalos G, Ochsenkuehn-Petropou-lou M, Megas P. Metallosis and elevated serum levels of tantalum following failed revision hip arthroplasty—a case report. Acta Orthop. 2014;85:677–80. https://doi.org/10.3109/17453674.2014.950816.
  • 6. Conradi M, Kocijan A, Klobčar D, Podgornik B. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank’s solution. Tribol Int. 2021;160: 107049.https://doi.org/10.1016/J.TRIBOINT.2021.107049.
  • 7. Reddy AR, Ismail S. Impact of multi-scaled surface textures on tribological performance of parallel sliding contact under lubricated condition. Tribol Int. 2023;183: 108415. https://doi.org/10.1016/J.TRIBOINT.2023.108415.
  • 8. Tewelde FB, Zhou T, Zhou J, Guo W, Zhao B, Ge X, Wang W,Wang X, Wang X. Asymmetric surface texturing for directional friction control under dry sliding condition. Tribol Int. 2023;181:108321. https://doi.org/10.1016/J.TRIBOINT.2023.108321.
  • 9. Song S, Xiao G, Liu Y, Zhou K, Liu S, Huang J. Tribological response of groove-textured surface with compressive stresson Ti6Al4V processed by laser and abrasive belt. Tribol Int.2023;180: 108265. https://doi.org/10.1016/J.TRIBOINT.2023.108265.
  • 10. Wang C, Hong J, Cui M, Huang H, Zhang L, Yan J. The effects of simultaneous laser nitriding and texturing on surface hardness and tribological properties of Ti6Al4V. Surf Coatings Technol. 2022;437: 128358. https://doi.org/10.1016/J.SURFCOAT.2022.128358.
  • 11. Huang J, Guan Y, Ramakrishna S. Tribological behavior of femto-second laser-textured leaded brass. Tribol Int. 2021;162: 107115.https://doi.org/10.1016/J.TRIBOINT.2021.107115.
  • 12. Lin N, Li D, Zou J, Xie R, Wang Z, Tang B. Surface texture-based surface treatments on Ti6Al4V titanium alloys for tribological and biological applications: a mini review. Materials. 2018;11:487.https://doi.org/10.3390/MA11040487.
  • 13. Sadeghi M, Kharaziha M, Salimijazi HR, Tabesh E. Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf Coatings Technol. 2019;362:282–92. https://doi.org/10.1016/J.SURFCOAT.2019.01.113.
  • 14. Pratap T, Patra K. Tribological performances of symmetrically micro-textured Ti-6Al-4V alloy for hip joint. Int J Mech Sci. 2020;182: 105736. https:// doi. org/ 10. 1016/J. IJMEC SCI. 2020.105736.
  • 15. Yu Z, Yin S, Zhang W, Jiang X, Hu J. Picosecond laser texturing on titanium alloy for biomedical implants in cell proliferation and vascularization. J Biomed Mater Res Part B Appl Biomater. 2020;108:1494–504. https://doi.org/10.1002/JBM.B.34497.
  • 16. Fiorucci MP, López AJ, Ramil A. Multi-scale characterization of topographic modifications on metallic biomaterials induced by nanosecond Nd:YVO4 laser structuring. Precis Eng.2018;53:163–8. https://doi.org/10.1016/j.precisioneng.2018.03.009.
  • 17. Yu Z, Yang G, Zhang W, Hu J. Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy. J Mater Process Technol. 2018;255:129–36. https://doi.org/10.1016/j.jmatprotec.2017.12.009.
  • 18. Kashyap V, Ramkumar P. Feasibility study of micro-groove crosshatched surface texturing on Ti6Al4V for improved biotribological performance in metal-on-polymer hip implant. Tribol Mater Surfaces Interfaces. 2019;13:150–60. https:// doi. org/ 10. 1080/17515831.2019.1606582.
  • 19. Wang Y, Ke C, Wu T, Zhao X, Wang R. Nanosecond laser texturing with hexagonal honeycomb micro-structure on titanium for improved wettability and optical properties. Optik (Stuttg).2019;192: 162953. https://doi.org/10.1016/j.ijleo.2019.162953.
  • 20. Grabowski A, Sozańska M, Adamiak M, Kępińska M, FlorianT. Laser surface texturing of Ti6Al4V alloy, stainless steel and aluminium silicon alloy. Appl Surf Sci. 2018;461:117–23. https://doi.org/10.1016/j.apsusc.2018.06.060.
  • 21. Wang C, Tian P, Cao H, Sun B, Yan J, Xue Y, Lin H, Ren T, HanS, Zhao X. Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing. ACS Omega. 2022;7:31081–97.
  • 22. Li LX, Li ZX, Xing ZG, Guo WL, Huang YF, Wang HD. Effect of femtosecond laser bionic texture on anti-wear properties of medical Ti-6Al-4 V. Tribol Int. 2023;190: 109062. https://doi.org/10.1016/J.TRIBOINT.2023.109062.
  • 23. Velayuthaperumal S, Radhakrishnan R. Effect of different laser texture configurations on improving surface wettability and wear characteristics of Ti6Al4V implant material. J Brazilian Soc Mech Sci Eng. 2023;45:1–14. https:// doi. org/ 10. 1007/ S40430- 023-04287-7/FIGURES/10.
  • 24. PN-EN ISO 5832-3:2017-02 Metallic materials—part 3: titanium alloy 6-aluminium 4-vadandium. Geneva, Switzerland, 2017.
  • 25. Woźniak A, Adamiak M. The influence of the slm process parameters optimization on the density and microstructure of Ti6Al4 Valloy. Int J Mod Manuf Technol. 2020;12:129–36.
  • 26. Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, ChagaO, Soh S, Huda S, Kandere-Grzybowska K, Grzybowski BA. Directing cell motions on micropatterned ratchets. Nat Phys.2009;5(8):606–12. https://doi.org/10.1038/nphys1306.
  • 27. Raimbault O, Benayoun S, Anselme K, Mauclair C, Bourgade T, Kietzig AM, Girard-Lauriault PL, Valette S, Donnet C. The effects of femto second laser-textured Ti-6Al-4V on wettability and cellresponse. Mater Sci Eng C. 2016;69:311–20. https://doi.org/10.1016/J.MSEC.2016.06.072.
  • 28. Chebolu A, Laha B, Ghosh M. Nagahanumaiah investigation on bacterial adhesion and colonisation resistance over laser-machined micro patterned surfaces. Micro Nano Lett. 2013;8:280–3. https://doi.org/10.1049/mnl.2013.0109.
  • 29. Veiko V, Karlagina Y, Zernitckaia E, Egorova E, Radaev M, Yaremenko A, Chernenko G, Romanov V, Shchedrina N, Ivanova E,et al. Laser-induced μ-rooms for osteocytes on implant surface: anin vivo study. Nanomater. 2022;12:4229. https://doi.org/10.3390/NANO12234229.
  • 30. Fisher J, Dowson D, Hamdzah H, Lee HL. The effect of sliding velocity on the friction and wear of UHMWPE for use in total artificial joints. Wear. 1994;175:219–25. https://doi.org/10.1016/0043-1648(94)90185-6.
  • 31. Houdková Š, Šperka P, Repka M, Martan J, Moskal D. Shiftedlaser surface texturing for bearings applications. J Phys Conf Ser.2017;843:012076. https:// doi. org/ 10. 1088/ 1742- 6596/ 843/1/012076.
  • 32. Wang C, Zhang G, Li Z, Zeng X, Xu Y, Zhao S, Hu H, ZhangY, Ren T. Tribological behavior of Ti-6Al-4V against corticalbone in different biolubricants. J Mech Behav Biomed Mater. 2019;90:460–71. https://doi.org/10.1016/J.JMBBM.2018.10.031.
  • 33. Ju J, Zhou Y, Wang K, Liu Y, Li J, Kang M, Wang J. Tribological investigation of additive manufacturing medical Ti6Al4V alloys against Al 2 O 3 ceramic balls in artificial saliva. J Mech Behav Biomed Mater. 2020;104: 103602. https:// doi. org/ 10. 1016/j.jmbbm.2019.103602.
  • 34. Huerta-Murillo D, García-Girón A, Romano JM, Cardoso JT, Cordovilla F, Walker M, Dimov SS, Ocaña JL. Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy. Appl Surf Sci. 2019;463:838–46. https://doi.org/10.1016/j.apsusc.2018.09.012.
  • 35. Wang Q, Wang H, Zhu Z, Xiang N, Wang Z, Sun G. Switchable wettability control of titanium via facile nanosecond laser-based surface texturing. Surf Interfac. 2021;24: 101122. https://doi.org/10.1016/j.surfin.2021.101122.
  • 36 Hamad AH. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution. In: Hamad AH, editor.High energy and short pulse lasers. London: InTech; 2016.
  • 37. Mannion PT, Magee J, Coyne E, O’Connor GM, Glynn TJ. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci. 2004;233:275–87. https://doi.org/10.1016/j.apsusc.2004.03.229.
  • 38. Giorleo L, Montesano L, La Vecchia GM. Laser surface texturing to realize micro-grids on DLC coating: effect of marking speed, power, and loop cycle. Int J Precis Eng Manuf. 2021;22:745–58.https://doi.org/10.1007/s12541-021-00498-x.
  • 39. Hauert R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol Int.2004;37:991–1003. https://doi.org/10.1016/J.TRIBOINT.2004.07.017.
  • 40. Tang MK, Huang XJ, Yu JG, Li XW, Zhang QX. The effect of textured surfaces with different roughness structures on the tribological properties of al alloy. J Mater Eng Perform. 2016;25:4115–25.https://doi.org/10.1007/s11665-016-2251-9.
  • 41. Palik E. Handbook of Optical Constans of solid. In: Palik ED, editor. 3 Academic Press. Cambridge; 1991. (978-0-12-544422-4).
  • 42. Grabowski A, Florian T, Wieczorek J, Adamiak M. Structuring of the Ti6Al4V alloy surface by pulsed laser remelting. Appl Surf Sci. 2021;535: 147618. https:// doi. org/ 10. 1016/j. apsusc. 2020.147618.
  • 43 Bulgakova NM, Bulgakov AV. Pulsed laser ablation of solids:transition from normal vaporization to phase explosion. Appl Phys A. 2001;73:199–208. https://doi.org/10.1007/S003390000686.
  • 44 Miotello A, Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A. 1999;69:S67–73. https://doi.org/10.1007/S003399900296.
  • 45 Bulgakova NM, Bulgakov AV, Bourakov IM, Bulgakova NA. Pulsed laser ablation of solids and critical phenomena. In: Bulgakova NM, Bulgakov AV, Bourakov IM, Bulgakova NA, editors.of the Applied Surface Science. Amsterdam: Elsevier; 2002. p.96–9.
  • 46. Yilbas BS, Ali H, Al-Sharafi A, Al-Qahtani H. Laser processing of Ti6Al4V alloy: wetting state of surface and environmental dust effects. Heliyon. 2019;5: e01211. https://doi.org/10.1016/j.heliyon.2019.e01211.
  • 47. Wu SQ, Lu YJ, Gan YL, Huang TT, Zhao CQ, Lin JJ, Guo S, Lin JX. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments. J Alloys Compd. 2016;672:643–52. https://doi.org/10.1016/j.jallcom.2016.02.183.
  • 48. Fellah M, Labaïz M, Assala O, Dekhil L, Taleb A, Rezag H, IostA. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for total hip prosthesis. Adv Tribol. 2014. https://doi.org/10.1155/2014/451387.
  • 49. Yuan S, Lin N, Zou J, Lin X, Liu Z, Yu Y, Wang Z, Zeng Q, Chen W, Tian L, et al. In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance. Vacuum. 2020;176: 109327. https:// doi. org/ 10. 1016/J. VACUUM. 2020.109327.
  • 50. Wang K, Xiong D, Niu Y. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes. Appl Surf Sci. 2014;317:875–83. https:// doi. org/ 10. 1016/J.APSUSC.2014.09.014.
  • 51. Wu Z, Xing Y, Huang P, Liu L. Tribological properties of dimple-textured titanium alloys under dry sliding contact. Surf Coatings Technol. 2017;309:21–8. https://doi.org/10.1016/J.SURFCOAT.2016.11.045.
  • 52. Ehtemam-Haghighi S, Prashanth KG, Attar H, Chaubey AK, Cao GH, Zhang LC. Evaluation of mechanical and wear properties of TixNb7Fe alloys designed for biomedical applications. Mater Des. 2016;111:592–9. https://doi.org/10.1016/J.MATDES.2016.09.029.
  • 53. Xu J, Hu W, Xie ZH, Munroe P. Reactive-sputter-deposited β-Ta2O5 and TaON nanoceramic coatings on Ti-6Al-4V alloy against wear and corrosion damage. Surf Coatings Technol. 2016;296:171–84. https://doi.org/10.1016/J.SURFCOAT.2016.04.004.
  • 54. Archard JF. Contact and rubbing of flat surfaces. J Appl Phys.1953;24:981–8. https://doi.org/10.1063/1.1721448.
  • 55. Johnson KL, Greenwood JA. An adhesion map for the contact of elastic spheres. J Colloid Interface Sci. 1997;192:326–33. https://doi.org/10.1006/JCIS.1997.4984.
  • 56. Bowsher JG, Shelton JC. A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear. 2001;250:167–79. https:// doi. org/ 10. 1016/ S0043- 1648(01)00619-6.
  • 57. Pfleging W, Kumari R, Besser H, Scharnweber T, Majumdar JD. Laser surface textured titanium alloy (Ti-6Al-4V): part 1—surface characterization. Appl Surf Sci. 2015;355:104–11. https://doi.org/10.1016/j.apsusc.2015.06.175.
  • 58. Qin Y, Xiong D, Li J. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film. Appl Surf Sci. 2015;347:475–84. https://doi.org/10.1016/J.APSUSC.2015.04.134.
  • 59. Varenberg M, Halperin G, Etsion I. Different aspects of the role of wear debris in fretting wear. Wear. 2002;252:902–10. https://doi.org/10.1016/S0043-1648(02)00044-3.
  • 60. Kim SH, Jeong SH, Kim TH, Choi JH, Cho SH, Kim BS, LeeSW. Effects of solid lubricant and laser surface texturing on tribological behaviors of atmospheric plasma sprayed Al 2 O 3 -ZrO 2 composite coatings. Ceram Int. 2017;43:9200–6. https://doi.org/10.1016/J.CERAMINT.2017.04.073.
  • 61. Cao L, Chen Y, Cui J, Li W, Lin Z, Zhang P. Corrosion wear performance of pure titanium laser texturing surface by nitrogen ionimplantation. Met. 2020;10:990. https://doi.org/10.3390/MET10080990.
  • 62. Kumari R, Scharnweber T, Pfleging W, Besser H, Majumdar JD. Laser surface textured titanium alloy (Ti-6Al-4V)—Part II—Studies on bio-compatibility. Appl Surf Sci. 2015;357:750–8. https://doi.org/10.1016/j.apsusc.2015.08.255.
  • 63. Tiainen L, Abreu P, Buciumeanu M, Silva F, Gasik M, Serna Guerrero R, Carvalho O. Novel laser surface texturing for improved primary stability of titanium implants. J Mech Behav Biomed Mater. 2019;98:26–39. https://doi.org/10.1016/j.jmbbm.2019.04.052.
  • 64. Xu Y, Li Z, Zhang G, Wang G, Zeng Z, Wang C, Wang C, Zhao S, Zhang Y, Ren T. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies onTi-6Al-4V fabricated by laser texturing. Tribol Int. 2019;134:352–64. https://doi.org/10.1016/J.TRIBOINT.2019.01.040.
  • 65. Zhou J, Sun Y, Huang S, Sheng J, Li J, Agyenim-Boateng E. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt Laser Technol. 2019;109:263–9. https://doi.org/10.1016/J.OPTLASTEC.2018.08.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0561fdd-09f1-4e60-ac07-83bb6c82ca7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.