PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biodegradation of diclofenac with fungal strains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diclofenac (2-[(2,6-Dichlorophenyl)amino] benzeneacetic acid) is a non-steroidal anti-inflammatory drug. Due to excessive use of diclofenac, this drug has been detected in surface water, ground water and drinking water. In our study, four fungal strain Trametes trogii, Aspergillus niger, Yarrowia lipolytica and Phanerochaete chrysosporium were investigated in terms of diclofenac degradation potential. Trametes trogii was found to be the most efficient strain with 100% diclofenac degradation rate. Two hydroxylated diclofenac metabolites have been identified in culture medium. Crude laccase from T. trogii almost completely removed diclofenac with 97% removal in 48 h. We suggest that the degradation of diclofenac depends on the cytochrome P450 enzyme system and laccase activity. After 24 h incubation decrease in toxicity of diclofenac was confirmed by Microtox test.
Słowa kluczowe
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 48 poz., wykr.
Twórcy
  • Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara–Turkey
autor
  • Central Instrumental Analysis II Laboratory, Faculty of Pharmacy, Ankara University, 06100 Tandoğan, Ankara–Turkey
autor
  • Department of Biology, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara–Turkey
Bibliografia
  • 1. Aktaş, N., Çiçek, H., Taşpnar Ünal, A., Kibarerc, G., Kolankaya, N. & Tanyolaça, A. (2001). Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol, Bioresource Technology, 80, pp. 29–36.
  • 2. Mayer, A.M. & Staples, R.C. (2004). Laccase: new functions for an old enzyme, Phytochemistry, 60, pp. 551–565.
  • 3. Arora, D.S. & Gill, P.K. (2001). Comparison of two assay procedures for lignin peroxidase, Enzyme Microbial Technology, 28, pp. 602–605.
  • 4. Bort, R., Mace, K., Boobis, A., Gómez-Lechón, M.J., Pfeifer, A. & Castell, J. (1999). Hepatic metabolism of diclofenac: Role of human CYP in the minor oxidative pathways, Biochemical Pharmacology, 58, pp. 787–796.
  • 5. Bourbonnais, R. & Paice, M.G. (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation, FEBS Letters, 267, pp. 99–102.
  • 6. Brink, H.J.M., Van Den Gorcom, R.F.M., Van Hondel, C.A.M.J.J. & Van Den Punt, P.J. (1998). Cytochrome P450 Enzyme Systems in Fungi, Fungal Genetics and Biology, 17, pp. 1–17.
  • 7. Camarero, S., Sarkar, S. & Ruiz-Duenas, F.J. (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites, Journal of Biological Chemistry, 274, pp. 10324–10330.
  • 8. Carlsson, C., Johansson, A-K., Alvan, G., Bergman, K. & Kühler, T. (2006). Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients, Science of the Total Environment, 364, pp. 67–87.
  • 9. Crešnar, B. & Petrič, S. (2011), Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta, 1814, pp. 29–35.
  • 10. Destain, J., Roblain, D. & Thonart, P. (1997). Improvement of lipase production from Yarrowia lipolytica, Biotechnology Letters, 19, pp. 105–107.
  • 11. Deveci, T., Unyayar, A. & Mazmanci, M.A. (2004). Production of Remazol Brilliant Blue R decolourising oxygenase from the culture filtrate of Funalia trogii ATCC 200800, Journal of Molecular Catalysis B: Enzymatic, 30, pp. 25–32.
  • 12. Domaradzka, D., Guzik, U. & Wojcieszyńska, D. (2015). Biodegradation and biotransformation of polycyclic non-seroidal anti-inflammatory drugs, Reviews in Environmental Science Biotechnology, 14, pp. 229–239.
  • 13. Esterhuizen-Londt. M., Hendel, A-L. & Pflugmacher, S. (2017). Mycoremediation of diclofenac using Mucor hiemalis, Toxicological & Environmental Chemistry, 2248, pp. 1–14.
  • 14. Fent, K., Weston, A. & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals, Aquatic Toxicology, 76, pp. 122–159.
  • 15. Gromadzka, K. & Nawrocki, J. (2006). Degradation of diclofenac and clofibric acid using ozone-loaded perfluorinated solvent, Ozone Science & Engineering, 28, pp. 85–94.
  • 16. Hata, T., Kawai, S., Okamura, H. & Nishida, T. (2010). Removal of diclofenac and mefenamic acid by the white rot fungus Phanerochaete sordida YK-624 and identification of their metabolites after fungal transformation, Biodegradation, 21, pp. 681–689.
  • 17. Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicology Letters, 131, pp. 5–17.
  • 18. Kümmerer, K. (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources–a review, Chemosphere, 45, pp. 957–969.
  • 19. Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-Roeleveld, K. & Rijnaarts, H. (2013). Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater, Biomed Research International, 9 p.
  • 20. Leemann, T., Transon, C. & Dayer, P. (1993). Cytochrome P450TB (CYP2C): A major monooxygenase catalyzing diclofenac 4OH-hydroxylation in human liver, Life Sciences, 52, pp. 29–34.
  • 21. Lloret, L., Eibes, G., Lú-Chau T.A., Moreira, M.T., Feijoo, G. & Lema, J.M. (2010). Laccase-catalyzed degradation of anti-inflammatories and estrogens, Biochemical Engineering Journal, 51, pp. 124–131.
  • 22. Luo, Y., Guo, W., N.G.O., Huu, H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. & Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of the Total Environment, 473–474, pp. 619–641.
  • 23. Majidi, D. & Aksöz, N. (2013). Stability of tyrosinase enzyme from Funalia Trogii, American Journal of Microbiological Research, 1, pp. 1–3.
  • 24. Marco-Urrea, E., Pérez-Trujillo, M., Blánquez, P., Vicenta, T. & Caminalc, G. (2010a). Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR, Bioresource Technology, 01, pp. 2159–2166.
  • 25. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató. C., Caminalc, G. & Vicenta, T. (2010b). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR, Journal of Hazardous Materials, 176, pp. 836–842.
  • 26. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G. & Vicent, T. (2010c). White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR, Chemosphere,78, pp. 474–481.
  • 27. Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T. & Caminal, G. (2009). Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor, Chemosphere, 74, pp. 765–72.
  • 28. Mazmanci, M.A. & Unyayar, A. (2010). Decolorization efficiency of Funalia trogii under static condition: Effect of C:N ratios, African Journal of Biotechnology, 9, pp. 6539–6544.
  • 29. Nie, E., Yang, M., Wang, D., Yang, X., Luo, X. & Zheng, Z. (2014). Degradation of diclofenac by ultrasonic irradiation: Kinetic studies and degradation pathways, Chemosphere, 113, pp. 165–170.
  • 30. Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A., Shivaprasad, H.L., Ahmed, S., Chaudhry, M.J.I., Arshad, M., Mahmood, S., Ali, A. & Khan, A.A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427, pp. 630–633.
  • 31. Official Journal of the European Union (http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=uriserv%3AOJ.L_.2015.078.01.0040.01.ENG(24.11.2017))
  • 32. Park, C., Lee, M., Lee, B., Kim, S.-W., Chase, H.A., Lee, J. & Kim, S. (2007). Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii, Biochemical Engineering Journal, 36, pp. 59–65.
  • 33. Pérez-Estrada, L.A., Malato, S., Gernjak, W., Agüera, A., Thurman, E.M., Ferrer, I. & Fernández-Alba, A.R. (2005). Photo-fenton degradation of diclofenac: Identification of main intermediates and degradation pathway, Environmental Science and Technology, 39, pp. 8300–8306.
  • 34. Pointing, S.B. (2001). Feasibility of bioremediation by white-rot fungi, Applied Microbiology and Biotechnology, 57, pp. 20–33.
  • 35. Ratanapongleka, K. & Phetsom, J. (2014). Decolorization of synthetic dyes by crude laccase from Lentinus Polychrous Lev., International Journal of Chemical Engineering and Applications, 5, pp. 26–30.
  • 36. Rymowicz, W., Fatykhova, A.R., Kamzolova, S.V., Rywińska, A. & Morgunov, I.G. (2010). Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes, Applied Microbiology Biotechnology, 87, pp. 971–979.
  • 37. Ryu, W.R., Shim,, S.H., Jang M.Y., Jeon, Y.J., Oh, K.K. & Cho, M.H. (2000). Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnology and Bioprocess Engineering, 5, pp. 211–214.
  • 38. Sathishkumar, P., Mythili, A., Hadibarata, T., Jayakumar, R., Kanthimathi, M.S., Palvannan, T., Ponraj, M., Salima, M.R. & Yusoffa, A.R.M. (2014). Laccase mediated diclofenac transformation and cytotoxicity assessment on mouse fibroblast 3T3-L1 preadipocytes, RSC Advances, 4, pp. 11689.
  • 39. Schrader, J., Etschmann, M., Sell, D., Hilmer, J.M. & Rabenhorst, J. (2004). Applied biocatalysis for the synthesis of natural flavor compounds–current industrial processes and future prospects, Biotechnology Letters, 26, pp. 463–472.
  • 40. Schuster, E., Dunn-Coleman, N., Frisvad, J.C. & Van Dijck, P. (2002). On the safety of Aspergillus Niger-a review, Applied Microbiology and Biotechnology, 59, pp. 426–435.
  • 41. Stoilova, I., Krastanov, A. & Stanchev, V. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation, Advances in Biosciences and Biotechnology, 1, pp. 208–215.
  • 42. Tran, N.H., Urase, T. & Kusakabe, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase, Journal of Water Environment Technology, 8, pp. 125–140.
  • 43. Trapido, M., Epold, I. & Dulova, N. (2012). Degradation of diclofenac in aqueous solution by homogeneous and heterogeneous photolysis, Journal of Environmental Engineering and Ecological Science, pp. 1–3.
  • 44. Webster, R., Pacey, M., Winchester, T., Johnson, P. & Jezequel, S. (1998). Microbial oxidative metabolism of diclofenac: production of 4’-hydroxydiclofenac using Epiccocum nigrum IMI354292, Applied Microbiology and Biotechnology, 49, pp. 371–376.
  • 45. Yesilada, O., Fiskin, K. & Yesilada, E. (1995). The use of white-rot fungus Funalia-trogii (malatya) for the decolorization and phenol removal from olive mill wastewater, Environmental Technology, 16, pp. 95–100.
  • 46. Yu, H., Nie, E., Xu, J., Yan, S., Cooper, W.J. & Song, W. (2013). Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments, Water Research, 47, pp. 1909–1918.
  • 47. Zhang, Y. & Geissen, S.-U. (2010). In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase, Journal of Hazardous Material, 176, pp. 1089–1092.
  • 48. Zhang, Y., Geissen. S.-U. & Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73, pp. 1151–1161
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a05562c9-aa74-41ed-97c3-d0dcdaa40015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.