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Fast and accurate precipitation estimation is an important element of remote atmosphere 
monitoring, as it allows, for example, to correct short-term weather forecasts and the 
prediction of several types of meteorological threats. The paper presents methodology for 
calibrating precipitation estimation algorithm based on MSG SEVIRI sensor data, and 
Optimal Cloud Analysis product available via EumetCast transmission. Calibration is 
performed in a predefined coastal zone area, and utilizes the parallelized gradient computing 
method. In order to perform and validate results of estimation, reference weather radar data 
was provided by the Meteorology and Hydrology Research Institute (pol. Instytut 
Meteorologii i Gospodarki Wodnej - IMGW). The research was conducted using the Tryton 
supercomputer - the high performance computing environment of Gdansk University of 
Technology.  
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1. Introduction
Multispectral satellite observations allow for monitoring of various phenomena related to the 
atmosphere, and the Earth’s surface. Appropriate processing of the data acquired by 
spaceborn sensors is of high interest, as it ensures appropriate accuracy of the obtained 
observations, and allows for estimating various physical quantities of environment systems. 
Therefore, in order to increase the accuracy of obtained measurements, methods of 
atmospheric, geometric and radiometric corrections are usually applied in the post-processing 
phase of the satellite data flow chain. However, appropriate correction of obtained 
observations is often not sufficient for obtaining the desired accuracy of particular satellite 
products like: land surface temperature, sea surface temperature, precipitation, or others. 
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Therefore, one of the possible approaches to deal with this problem is a process known as 
parameterization, which relies on finding the best possible (for instance, in the sense of mean 
squared error) estimation that best fits conditions for the analysed set of observations. In the 
paper, the methodology for calibrating precipitation estimation algorithm based on MSG 
SEVIRI sensor and Optimal Cloud Analysis product available via EumetCast transmission is 
presented. Calibration is performed in a predefined coastal zone area. In order to perform and 
validate results of estimation, reference weather radar data provided by Meteorology and 
Hydrology Research Institute (IMGW) was utilized. Due to the fact that processing of 
analyzed data requires large computational and memory resources, that exceed capabilities of 
standard PC's, the computations for this research were performed in the dedicated high 
performance computing environment of Gdansk University of Technology, namely, using the 
Tryton supercomputer [1].  

 

2. Materials and methods 
2.1. Algorithm of precipitation estimation 

Precipitation estimation, considered in this paper, is based upon two parameters that can 
be obtained from satellite sensors. The first parameter, Condensed Water Path (CWP) 
describes the amount of water contained in a cloud column [3], the second parameter Cloud 
Top Temperature (CTT), and the relation between these two values, is defined as follows [2]: 

 , (1) 
where CWP is the amount of liquid or solid water per m2 of cloud [g/m2] product delivered 
via EumetCast transmission, H is the height of rainfall column [km] retrieved from level 1.5 
product [4], c is the scaling constant [mm  km / h] and CWP0 is threshold value of CWP, 
determining whether the considered cloud fragment is classified as precipitating [g/m2],α – 
exponent. 
 
Height of rainfall column is calculated with following formula: 

 ,  (2) 

where  is cloud top temperature,  is maximum cloud top temperature in square 
128x128 pixels of SEVIRI image,  is decrease of atmosphere temperature related to altitude 
(assumed to be constant and equal to 6.5 K/km) and  is the minimal height of rain 
column for very thin cloud. Usually this constant is equal to 0.7 km [2]. 
 

2.2. Data and sensors 
To estimate precipitation using the formula mentioned in the previous section; two 

types of information are needed. First one is CWP, which can be inferred from cloud 
properties. In this case, cloud properties product is obtained from 
Optimal Cloud Analysis (OCA) dataset provided via EumetCast. OCA product is calculated 
by Eumetsat using data from SEVIRI sensor (Fig. 1). 
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Fig. 1. Optical Thickness (left) and Droplet effective radius (right) as part of Optimal Cloud Analysis 

Product. 
 

Second input data type is rainfall column height (H). This parameter can be calculated 
using Cloud Top Temperature (CTT). CTT can be obtained using 10.8 um thermal channel 
provided from SEVIRI sensor (Fig. 2). 

 
Fig. 2. SEVIRI 10.8 um thermal channel. 

 
As shown above, the precipitation estimation algorithm mentioned in the previous 

section can be exclusively based on data from SEVIRI sensor [4]. SEVIRI (Spinning 
Enhanced Visible and Infrared Imager) sensor is an integral part of Meteosat-8, Meteosat-9, 
Meteosat-10 and Meteosat-11 satellites. Data used in this research is mainly provided by 
Meteosat-10. Effective resolution of SEVIRI sensor over Poland oscillates about 3.5 km x 7.5 
km per pixel. New observations are provided every 15 min. 

The calibration process requires reference data. In the case of precipitation estimation 
algorithm, data from weather radar is used. Radar datasets, provided by IMGW (pol. Instytut 
Meteorologii i Gospodarki Wodnej - IMGW), cover the entirety of Poland and have a 
resolution of 1 km x 1 km per pixel. IMGW provides several radar observation products, as 
well as raw data. For calibration of satellite data, CMAX product, which represents radar 
reflectivity maximum values from the area of localized meteorological structure, was chosen 
[5]. Example, weather radar dataset visualization was presented in Fig. 3. Every dataset is 
produced for 10 min periods. 
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Fig. 3. Weather data CMAX product rescaled to precipitation intensity. 

 
 

3. Algorithms of parameterisation 
One of many methods used to perform formula or algorithm parameterisation is linear 

regression. This method is well-known, and in general can be characterized by low 
computational cost. However, standard form of linear regression is suitable for estimating 
linear regression between two variables. In the case of more complicated formulas, it is 
insufficient. Therefore, in such situations, the family of gradient method could be a good 
solution. 
 

3.1. Gradient method 
Gradient method is one of many artificial intelligence (AI) algorithms used in the 

problem of minimization of the goal function. The basic version of this method uses gradient 
of goal function to calculate new points in the domain, which should be closer to global or 
local minimum of goal function. This could be expressed by the following equation: 

 ,  (3) 
where f is goal function, x is some point in domain of goal function, and a is a scaling 
constant. 

However, in some situations, convergence of pure gradient method is too weak, 
therefore, to accelerate the process, a hessian matrix of goal function, obtained by multiplying 
its reciprocal by the gradient, can be applied. Note that, for some particular areas of domain, a 
hessian matrix is singular, or near to singularity, and cannot be successfully reversed. In such 
cases, regularisation similar to the Levenberg method [6] is applied, resulting with the 
following formula: 

 ,   (4) 

where a, λ and μ are scaling coefficients. Sometimes in research, an extended version of this 
method was applied: 

Volume 19 HYDROACOUSTICS

20



 ,  (5) 

where ϕ is a scaling constant. Gradient normalisation fragment ( ) was used in 
calibration test for synthetic data; however, it did not give positive results for real data. Even, 
in some cases, it made the search process more unstable. 
 

In the case of precipitation estimation, the goal function was defined as follows: 

 
(6) 

where: 

 ,  (7) 

where  – squared error is calculated for each pixel using equation (6),  is estimated 
precipitation, and  is reference precipitation from radar data. Goal function in this form 
allows to relatively easy designation of its gradient and hessian. Form of gradient and hessian 
operator was defined as follows: 

 ,  (8) 

 ,  (9) 
 

Application of gradient operator from equation (8) on equation (7) results with: 

 ,  (10) 

where: 

 ,  (11) 
 

And also, applying hessian operator from equation (9) to equation (7) results with: 

 ,  (12) 

 
where: 
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 ,  (13) 
 

Because gradient and hessian of precipitation estimation is time and spatialy dependent, as is 
shown; therefore, they are also computed during the calibration process.  

3.2. Data flow and verification methodology 
Fig. 4 describes the general, iterative, approach to calibration using gradient method. Stop 
condition evaluation checks for two sub-conditions. First one is value of goal function; if is 
lower than assumed threshold, then stop condition is satisfied. Second sub-condition checks if 
the maximum number of iterations has been reached. 

 

 
Fig. 4. Gradient method data flow. 

 
To verify whether the method is correct, the following experiment was conducted. In 

the verification procedure, in place of reference radar data, precipitation estimation with 
known parameters values was used. Reference data was calculated using equation (1) for the 
interval from 21.06.2015 to 23.09.2015, with the use of the following parameters: 

• c = 1 mm⋅km/h 
• CWP0 = 18 g/m2 
• α = 1.6 

Gradient algorithm was initiated with the following parameters: 
• c = 1 mm⋅km/h 
• CWP0 = 17 g/m2 
• α = 1.6 

 
In this experiment, the next step was calculated with the following formula: 

,     (14) 
 

After 300, the "stop" condition was generated, and final results were as follows: 
• c = 0.997935 mm*km/h 
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• CWP0 = 17.9878 g/m2 
• α = 1.6054 
• Final mean square error: 1.38 ⋅ 10-11 mm2/h2 

This experiment shows that the gradient method with the mentioned modification is 
convergent, as the obtained resulting error is very small (Fig. 5).  
 

 
Fig. 5. Mean square error value in verification run (logarithmic scale). 

 
4. Results 

 
Fig. 6. Poland precipitation divisions [7]. 

 
In order to evaluate the usefulness of the proposed methodology, we performed three 
experiments with real datasets. For each case, calibration was performed for the same time 
interval - from 21.06.2015 to 23.09.2015, for the same starting parameters c = 1 mm km/h; 
CWP0 = 18 g/m2; α = 1.6, and with the same step calculation formula: 

      (15) 
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The only difference between experiments was the spatial scope of the analysed data. The first 
real data experiment was performed on the area of entire Poland. Second experiment was 
constrained to a fragment of Poland, precipitation division no I. Third experiment was 
constrained to a fragment of Poland, precipitation division no III. Precipitation divisions are 
shown on Fig. 6. 
For entire Poland, after "stop" condition was met, results were as follows: 

• c = 0.0225682 mm km/h 
• CWP0 = 16.3789 g/m2 
• α = 0.557807 
• Final mean square error: 2.55528 * 10-3 mm2/h2 

The minimum of goal function was obtained after 102 iterations, and parameter values were:  
• c = 0.103338 mm km/h 
• CWP0 = 24.0147 g/m2 
• α = 2.01764 
• Mean square error: 2.49207 * 10-3 mm2/h2 

 Course of goal function was depicted on Fig. 7. 
 

 
Fig. 7. Mean square error value in real data run for entire Poland (logarithmic scale). 

 
For division I results were as follows: 

• c = 0.662674 mm km/h 
• CWP0 = 64.5735 g/m2 
• α = 2.9977 
• Final mean square error: 3.502 * 10-3 mm2/h2 

Minimal error occurred in 140th iteration: 
• c = 0.0522732 mm km/h 
• CWP0 = 14.4615 g/m2 
• α = 1.48839 
• Mean square error: 3.102 * 10-3 mm2/h2 

 Plot of mean square error vs iteration no. was presented on Fig. 8. 
 

Volume 19 HYDROACOUSTICS

24



 
Fig. 8. Mean square error value in real data run for division I (logarithmic scale). 

 
For division III after 300 iterations results were as follows: 

• c = 1.21074 mm km/h 
• CWP0 = 100.546 g/m2 
• α = 3.47495 
• Final mean square error: 4.3153 * 10-3 mm2/h2 

Minimal error occurred in 169th iteration: 
• c = 0.0712125 mm km/h 
• CWP0 = 10.8029 g/m2 
• α = 1.29595 
• Mean square error: 3.6828 * 10-3 mm2/h2 

 Course of goal function was depicted on Fig. 9. 

 
Fig. 9. Mean square error value in real data run for division III (logarithmic scale). 

 
Analysis of results gave the following observations: 

• in the case of real data, the calibration process tends to be unstable,  
• CWP0 and α seems to impact in an additive way to each other, which is not always 

positive, 
• sometimes very different parameter sets give similar error values, 
• parameters for minimal error have close values in the cases of division I and III. 
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5. Conclusions 

In the paper, the method and technological framework for remote precipitation 
estimation was presented. The method utilizes a gradient method algorithm augmented by 
application of a hessian matrix, and regularisation parameter. Authors show that the proposed 
method is convergent, and finds an optimized set of parameters for particular sets of equations 
based on the reference big data validation set. However, the calibration process requires 
further improvements. First is the stability of the iterative method. This can be achieved by 
assigning a maximal step length in the domain of every parameter.  
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