Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China At present, the analysis of iron core vibration often uses the finite element method, but its modeling process is complex and the calculation time is long. To address this issue, this paper proposes a magnetic mechanical coupled magnetostrictive vibration calculation model for iron cores based on the magnetic network method with four-node elements, intended to achieve fast and accurate vibration assessment. Taking the Epstein frame circle as the research object, a four-node element magneto-mechanical coupling model of the square circle was constructed. The calculation results were compared with the finite element simulation results at typical positions of the square circle, and the consistency of the magnetic flux density values and node displacements was good, verifying the effectiveness and accuracy of the proposed method. The comparison of simulation time shows that the four-node magneto-mechanical model significantly shortens the calculation time when calculating vibration displacement, providing new ideas and feasible methods for efficient calculation of iron core vibration and noise in electrical equipment.
Czasopismo
Rocznik
Tom
Strony
899--919
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
- Rail Transit Electrical Automation Engineering Laboratory of Gansu Province Lanzhou Jiaotong University An Jiabao
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
- Rail Transit Electrical Automation Engineering Laboratory of Gansu Province Lanzhou Jiaotong University
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
autor
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, CO 730070 China
Bibliografia
- [1] Gepend W. W. J., Analysis and control research on core vibration of UHV shunt reactor [J], Transactions of China Electrotechnical Society, vol. 37, no. 9, pp. 2190–2198 (2022), DOI: 10.19595/j.cnki.1000- 6753.tces.211477.
- [2] Moses A. J. A. P. I., Phophongviwat T., Contribution of magnetostriction to transformer noise, Proceedings of the 45th International Universities Power Engineering Conference UPEC2010 IEEE (2010).
- [3] Kubiak W. W. P., Vibration analysis of small power transformer [J], COMPEL-The International Journal for Computation Mathematics in Electrical Electronic Engineering, vol. 29, no. 4, pp. 1116–1124 (2010), DOI: 10.1108/03321641011044532.
- [4] Xiaojun Z. L. Z., Yang L., Experimental study on the effect of mechanical stress on the comprehensive magnetic properties of the grain-oriented silicon stee [J], Transactions of China Electrotechnical Society, vol. 37, no. 22, pp. 5776–5787 (2022), DOI: 10.19595/j.cnki.1000-6753.tces.210703.
- [5] Shahaj A. G. S. D., A possible method for magnetostrictive reduction of vibration in large electrical machines [J], IEEE Transactions on Magnetics, vol. 47, no. 2, pp. 374–385 (2010), DOI: 10.1109/TMAG.2010.2095875.
- [6] Bartoletti C. D. M., Di Carlo D., Vibro-acoustic techniques to diagnose power transformers [J], IEEE Transactions on power Delivery, vol. 19, no. 1, pp. 221–229 (2004), DOI: 10.1109/TPWRD.2003.820177.
- [7] Datta S., Atulasimha J., Mudivarthi C. et al., Modeling of magnetomechanical actuators in laminated structures [J], Journal of Intelligent Material Systems and Structures, vol. 20, no. 9, pp. 1121–1135 (2009), DOI: 10.1177/1045389X09104262.
- [8] Kannan K., Dasgupta A., A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures [J], Smart Materials and Structures, vol. 6, no. 3, 341 (1997), DOI: 10.1088/0964- 1726/6/3/011.
- [9] Wahi S. K., Gupta D., Santapuri S., Finite element analysis and design of a magnetostrictive material based vibration energy harvester with a magnetic flux path [J], Smart Materials and Structures, vol. 33, no. 11, 115038 (2024), DOI: 10.1088/1361-665X/ad8408.
- [10] Yanli Z. X. S., Dexin X., Measurement and simulation of magnetostrictive properties for non-grain oriented electrical steel sheet [J], Transactions of China Electrotechnical Society, vol. 28, vol. 11, pp. 176–181 (2013), DOI: 10.19595/j.cnki.1000-6753.tces.2013.11.024.
- [11] Yanli Z. X. S., Dexin X., Modeling of anisotropic magnetostriction property of non-oriented silicon steel sheet [J], Proceedings of the CSEE, vol. 34, no. 27, pp. 4731–4736 (2014), DOI: 10.13334/j.0258- 8013.pcsee.2014.27.021.
- [12] Zhu L. Y. Q., Yan N. R., Research on vibration and noise of power transformer cores including magnetostriction effects [J], Transactions of China Electrotechnical Society, vol. 28, no. 4, pp. 1–6+19 (2013), DOI: 10.19595/j.cnki.1000-6753.tces.2013.04.001.
- [13] Kitakawa W. I. Y., Todakat T., Analysis of structural deformation and vibration of a transformer core by using magnetic property of magnetostriction [J], Electrical Engineering in Japan, vol. 172, no. 1, pp. 19–26 (2010), DOI: 10.1002/eej.20947.
- [14] Yang I. J. L. S. H., Lee K. B., A process to reduce the electromagnetic vibration by reducing the spatial harmonics of air gap magnetic flux density [J], IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–6 (2020), DOI: 10.1109/TMAG.2020.3022844.
- [15] Lambert M., Transformer modeling for low-and mid-frequency electromagnetic transients simulation [D], École Polytechnique de Montréal (2014).
- [16] Fu D., Research on modeling and optimization design of new transverse flux permanent magnet linear motor [D], Shandong University (2019).
- [17] Changjin Z. Z. C., Qingxiao M. E. I. et al., Nonlinear dynamic equivalent magnetic network model analysis of transverse flux permanent magnet synchronous motor [J], Proc. CSEE, vol. 39, no. 1, pp. 307–314+345 (2019), DOI: 10.13334/j.0258-8013.pcsee.180495.
- [18] Keman Lin N. L., Magnetic Circuit Modeling and Characteristics of a New Magnetron Adjustable Reactor Considering Leakage Effect [J], Transactions of China Electrotechnical Society, vol. 30, no. 2, pp. 114–121 (2015), DOI: 10.19595/j.cnki.1000-6753.tces.2015.02.015.
- [19] Xie W. W. G., LI H., Equivalent magnetic network model and parameter calculation of separable transformer [J], Journal of Harbin Engineering University, vol. 30, no. 7, pp. 747–750 (2009), DOI: 10.3969/j.issn.1006-7043.2009.07.005.
- [20] Hane Y., Nakamura K., Kurita N., A Consideration of Magnetostriction Force Calculation for Transformer Core by Using Reluctance Network Analysis [J], Journal of the Magnetics Society of Japan, vol. 45, no. 3, pp. 56–60 (2021).
- [21] Du Y., Research on transformer core vibration based on magnetic-elastic coupling theory [D], North China Electric Power University (2020).
- [22] Lihua Z., Study of Affection from Magnetostriction in Laminated Core on Vibration Noise of Transformer and AC Motor [D], Hebei University of Technology, Tianjin (2013).
- [23] Zhao X., Du Y., Liu Y. et al., Analysis of DC biased vibration characteristics of iron core using frequency domain method of magnetic mechanical coupling field [J], High Voltage Technology, vol. 46, no. 4, pp. 1216–1225 (2020), DOI: 10.13336/j.1003-6520.hve.20200430013.
- [24] Zhao X., Zhang J., Wang H. et al., Fine tuned simulation method for transformer iron core vibration characteristics considering the influence of air gap from the perspective of electric magnetic mechanical coupling [J], Transaction of China Electrotechnical Society, vol. 39, no. 14, pp. 4257–4269 (2024), DOI: 10.19595/j.cnki.1000-6753.tces.230719.
- [25] Kitagawa W., Ishihara Y., Todaka T. et al., Analysis of structural deformation and vibration of a transformer core by using magnetic property of magnetostriction [J], Electrical Engineering in Japan, vol. 172, no. 1, pp. 19–26 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a052af32-2e7d-4516-8bae-ffa4839945cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.