Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The current stability assessment model within the context of weather criteria has remained unchanged since 2008. The loading of bulk carriers in the Clarion-Clipperton Zone, due to its specific nature, requires a detailed assessment that includes the impact of irregular waving during loading operations. Based on short-term predictions of roll motion during bulk carrier loading simulation, a stability evaluation is conducted according to the standards outlined in the IS Code and by utilizing a modified weather criterion, where the author took into account variable wave height and wave period. As a result, it was found that non-compliance with the existing weather criterion under specific operational weather conditions is not observed. The modified weather criterion illustrates the range of waves in which the b/a ratio increases and decreases, thereby indicating unfavorable wave periods. The current model of the weather criterion (IS Code) for bulk carriers loaded in the Clarion-Clipperton Zone while in a dead ship condition is deemed sufficient.
Słowa kluczowe
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Gdynia Maritime University, Faculty of Navigation 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
- 1. ABS (2016) Guidance notes on selecting design wave by long term stochastic method (Issue October). ABS-238. American Bureau of Shipping.
- 2. Andrei, C. (2017) A proposed new generation of intact stability criteria for assessment of ship stability in longitudinal waves. IOP Conference Series: Materials Science and Engineering, 227(1), 012005, doi: 10.1088/1757- 899X/227/1/012005.
- 3. Bai, Y. & Jin, W.-L. (2016) Formal safety assessment applied to shipping industry. In: Marine Structural Design (Second Edition), pp. 765–780, Elsevier, doi: 10.1016/ B978-0-08-099997-5.00041-1.
- 4. Begović, E., Boccadamo, G., Rinauro, B. & Rosano, G. (2022) Excessive acceleration simplified Operational Guidance. International Journal of Naval Architecture and Ocean Engineering 14(7), 100473, doi: 10.1016/j. ijnaoe.2022.100473.
- 5. Bhatia, M., Das, N., Dutta, P. & Chattopadhyay, H. (2023) Numerical analysis on the seakeeping performances of a full-scale container ship hull using strip theory. Physics of Fluids 35(11), 114106, doi: 10.1063/5.0172626.
- 6. Biran, A.B. (2003) Numerical integration in naval architecture. In Ship Hydrostatics and Stability, Chapter 3, pp. 71–90, Elsevier, doi: 10.1016/B978-075064988- 9/50004-3.
- 7. Biran, A. & López-Pulido, R. (2014) Numerical integration in naval architecture. In Ship Hydrostatics and Stability (Second Edition), Chapter 3, pp. 77–96, Elsevier, doi: 10.1016/ B978-0-08-098287-8.00003-7.
- 8. B978-0-08-098287-8.00003-7. 8. Cakici, F., Sukas, O.F., Kinaci, O.K. & Alkan, A.D. (2017) Prediction of the vertical motions of DTMB 5415 Ship using different numerical approaches. Brodogradnja 68(2), pp. 29–44, doi: 10.21278/brod68203.
- 9. Chung, J., Shin, D.M., Kim, W.-D. & Moon, B.Y. (2020) Current status of the 2nd generation of intact stability: Investigation of the pure loss of stability and parametric roll mode. Journal of Ocean Engineering and Technology 34(2), pp. 55–65, doi: 10.26748/ksoe.2019.047.
- 10. Corigliano, P. & Frisone, F. (2024) On the fatigue of ship-structures under wave loads. Journal of Civil Engineering Research & Technology 6(5), pp. 1–7.
- 11. Esmailian, E., Steen, S. & Koushan, K. (2022) Ship design for real sea states under uncertainty. Ocean Engineering 266(P5), 113127, doi: 10.1016/j.oceaneng.2022.113127.
- 12. Hahn, B.H. & Valentine, D.T. (2017) Introduction to numerical methods. In Essential MATLAB for Engineers and Scientists. Sixth Edition. Chapter 14, pp. 295–323, Elsevier, doi: 10.1016/B978-0-08-100877-5.00016-5.
- 13. Hinz, T. (2015) Analiza ryzyka jako alternatywna metoda oceny bezpieczenstwa statecznosciowego statku w stanie nieuszkodzonym. Politechnika Gdańska.
- 14. IACS (2018) Guidance and Information on Bulk Cargo Loading and Discharging to Reduce the Likelihood of Over-stressing the Hull Structure (Issue July).
- 15. IMO (2002) SLF 45. Report to the Maritime Safety Committe.
- 16. IMO (2008a) Adoption of the international code on intact stability, 2008 (2008 IS CODE) (Vol. 267, Issue December).
- 17. IMO (2008b) MSC.1/Circ.1281, Explanatory notes to the international code on intact stability, 2008.
- 18. IMO (2020) Interim Guidelines on the Second Generation Intact Stability Criteria, IMO MSC.1/Circ.1627.
- 19. ITTC (2021) The Stability in Waves Committee Final Report and Recommendations to the 29th ITTC. Stability in Waves Committee.
- 20. Jiangnan Shipyard (2006) 73600DWT Bulk Carrier ‒ Loading Manual, Jiangnan Shipyard Co., Ltd. (Unpublished).
- 21. Journee, J.M.J. & Adegeest, L.J.M. (2003) Theoretical Manual of Strip Theory Program “SEAWAY for Windows” (4.19, Issue September). Delft University of Technology.
- 22. Kacprzak, P. (2021) An analysis of shear forces, bending moments and roll motion during a nodule loading simulation for a ship at sea in the Clarion–Clipperton Zone. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 65 (137), pp. 9–20, doi: 10.17402/456.
- 23. Laar, G.F.M. van (2021) Sustainable Transport of Polymetallic Nodules. Master thesis, TU Delft. Available on: https:// repository.tudelft.nl/islandora/object/uuid%3Aac42edbaa4ca-49ec-bb99-1c1b0b203f20.
- 24. Liatsis, P. (2023) Evaluation of IMO second-generation intact stability criteria and examination of different fishing vessel designs to dead ship condition and excessive acceleration failure mode. Degree project, KTH Royal Institute, Stockholm, Sweden, Available on: https://kth.diva-portal. org/smash/get/diva2:1818047/FULLTEXT01.
- 25. Lipton, I.T., Nimmo, M.J. & Parianos, J.M. (2016) NI 43- 101 Technical Report. TOML Clarion Clipperton Zone Project, Pacific Ocean (Issue July). AMC Project 315039.
- 26. Marlantes, K.E., Kim, S.P. & Hurt, L.A. (2022) Implementation of the IMO second generation intact stability guidelines. Journal of Marine Science and Engineering 10(1), 41, doi: 10.3390/jmse10010041.
- 27. Mata-Álvarez-Santullano, F. & Pérez-Rojas, L. (2015) Application of IMO second generation intact stability criteria for dead ship condition to small fishing vessels. Proceedings of the 12th International Conference on the Stability of Ships and Ocean Vehicles, 14–19 June 2015, Glasgow, UK.
- 28. Nguyen, T.H.H., Tran, N.T., Pham, T.T.H. & Do, D.L. (2018) Prediction of ship motions in head waves using linear strip theory. Journal of Transportation Science and Technology 27+28, pp. 98–103.
- 29. Okumoto, Y., Takeda, Y., Mano, M. & Okada, T. (2009) Design of Ship Hull Structures: A Practical Guide for Engineers. Springer Berlin, Heidelberg, doi: 10.1007/978-3-540- 88445-3.
- 30. Paroka, D., Asri, S., Rosmani & Hamzah (2020) Alternative assessment of weather criterion for ships with large breadth and draught ratios by a model experiment: A case study on an Indonesian ro-ro ferry. International Journal of Maritime Engineering 162(A1). doi: 10.3940/rina. ijme.2020.a1.581.
- 31. Petacco, N. & Gualeni, P. (2020) IMO second generation intact stability criteria: General overview and focus on operational measures. Journal of Marine Science and Engineering 8(7), 494, doi: 10.3390/jmse8070494.
- 32. Prendergast, J., Li, M. & Sheng, W. (2020) A study on the effects of wave spectra on wave energy conversions. IEEE Journal of Oceanic Engineering 45(1), pp. 271–283, doi: 10.1109/JOE.2018.2869636.
- 33. Shipyard Szczecin (1986) B-517 Series ‒ Loading Manual (Unpublished).
- 34. Shu, Z. & Moan, T. (2011) Reliability analysis of a bulk carrier in the ultimate limit state under combined global and local loads in the hogging and alternate hold loading condition. Marine Structures 24(1), 1–22, doi: 10.1016/j. marstruc.2010.11.002.
- 35. Soliwoda, J. (2008) Vessel stability safety during cargo operations. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie 13(85), pp. 79–85.
- 36. Szozda, Z. (2006) Stateczność statku morskiego. Akademia Morska w Szczecinie.
- 37. Szozda, Z. & Krata, P. (2022) Towards the evaluation of the second generation intact stability criteria ‒ Examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing. Ocean Engineering 248, 110796, doi: 10.1016/j.oceaneng.2022.110796.
- 38. Tupper, E.C. (2013) Introduction to Naval Architecture (Fifth Edition). Butterworth-Heinemann, doi: 10.1016/ C2011-0-07775-X.
- 39. Wen, P. & Fadillah, A. (2022) The effect of trim on stability and seakeeping of tanker, container, and bulk carrier. IOP Conference Series: Earth and Environmental Science 972(1), 012037, doi: 10.1088/1755-1315/972/1/012037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a04b9987-5207-4de1-b6b8-aa662996bdf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.