PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In silico validation of a customizable fully-autonomous artificial pancreas with coordinated insulin, glucagon and rescue carbohydrates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.
Twórcy
autor
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Pabellón 11, Madrid, 28029, Spain
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Pabellón 11, Madrid, 28029, Spain
autor
  • Instituto Universitario de Automática e Informática Industrial, Universitat Politčcnica de Valčncia, C/ Camí de Vera, s/n, Valčncia, 46022, Spain
  • Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, Pabellón 11, Madrid, 28029, Spain
Bibliografia
  • [1] Peacock S, Frizelle I, Hussain S. A systematic review of commercial hybrid closed-loop automated insulin delivery systems. Diabetes Therapy 2023;14(5):839-55.
  • [2] DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018;1391(0138):2449-62.
  • [3] Malahi AE, Elsen MV, Charleer S, Dirinck E, Ledeganck K, Keymeulen B, et al. Relationship between time in range, glycemic variability, HbA1c, and complications in adults with type 1 diabetes mellitus. J Clin Endocrinol Metabol 2022;107(2):e570-81.
  • [4] Gingras V, Taleb N, Roy-Fleming A, Legault L, Rabasa-Lhoret R. The challenges of achieving postprandial glucose control using closed-loop systems in patients with type 1 diabetes. Diabetes Obes Metabol 2018;20(2):245-56.
  • [5] Zaharieva DP, Messer LH, Paldus B, O’Neal DN, Maahs DM, Riddell MC. Glucose control during physical activity and exercise using closed loop technology in adults and adolescents with type 1 diabetes. Can J Diabetes 2020;44(8):740-9.
  • [6] Soylu S, Danisman K. In silico testing of optimized fuzzy PD controller for artificial pancreas. Biocybern Biomed Eng 2018;38(2):399-408.
  • [7] Garcia-Tirado J, Lv D, Corbett JP, Colmegna P, Breton MD. Advanced hybrid artificial pancreas system improves on unannounced meal response-in silico comparison to currently available system. Comput Methods Programs Biomed 2021;211:106401.
  • [8] Shalit R, Minsky N, Laron-Hirsh M, Cohen O, Kurtz N, Roy A, et al. Unannounced meal challenges using an advanced hybrid closed-loop system. Diabetes Technol Ther 2023;25(9):579-88.
  • [9] Orozco-López O, Castańeda CE, García-Sáez G, Hernando ME, Rodríguez-Herrero A. Personalized hybrid artificial pancreas using unidirectional sliding-modes control algorithm. Biocybern Biomed Eng 2022;42(4):1218-35.
  • [10] Estremera E, Beneyto A, Cabrera A, Contreras I, Vehí J. Intermittent closed-loop blood glucose control for people with type 1 diabetes on multiple daily injections. Comput Methods Programs Biomed 2023;236:107568.
  • [11] Messer LH. Why expectations will determine the future of artificial pancreas. Diabetes Technol Ther 2018;20(S2):65-8.
  • [12] Brosilow C, Babu J. Techniques of model based control. Prentice Hall; 2002.
  • [13] Boughton CK, Hartnell S, Allen JM, Hovorka R. The importance of prandial insulin bolus timing with hybrid closed-loop systems. Diabetic Med 2019;36(12):1716-7.
  • [14] Beato-Víbora PI, Arroyo-Díez FJ. New uses and formulations of glucagon for hypoglycaemia. Drugs Context 2019;8:1-10.
  • [15] Rodriguez E, Villamizar R. Artificial pancreas: A review of meal detection and carbohydrates counting techniques. Rev Diabetic Stud 2022;18(4):171-80.
  • [16] Jacobs PG, Resalat N, Youssef JE, Reddy R, Branigan D, Preiser N, et al. Incorporating an exercise detection, grading, and hormone dosing algorithm into the artificial pancreas using accelerometry and heart rate. J Diabetes Sci Technol 2015;9(6):1175-84.
  • [17] Fushimi E, Battista HD, Garelli F. A dual-hormone multicontroller for artificial pancreas systems. IEEE J Biomed Health Inf 2022;26(9):4743-50.
  • [18] Huyett LM, Ly TT, Forlenza GP, Reuschel-DIvirgilio S, Messer LH, Wadwa RP, et al. Outpatient closed-loop control with unannounced moderate exercise in adolescents using zone model predictive control. Diabetes Technol Ther 2017;19(6):331-9.
  • [19] Beneyto A, Bertachi A, Bondia J, Vehi J. A new blood glucose control scheme for unannounced exercise in type 1 diabetic subjects. IEEE Trans Control Syst Technol 2020;28(2):593-600.
  • [20] Sala-Mira I, Garcia P, Díez JL, Bondia J. Internal model control based module for the elimination of meal and exercise announcements in hybrid artificial pancreas systems. Comput Methods Programs Biomed 2022;226:107061.
  • [21] Moscardó V, Díez JL, Bondia J. Parallel control of an artificial pancreas with coordinated insulin, glucagon, and rescue carbohydrate control actions. J Diabetes Sci Technol 2019;13(6):1026-34.
  • [22] van Bon AC, Blauw H, Jansen TJP, Laverman GD, Urgert T, Geessink-Mennink J, et al. Bihormonal fully closed-loop system for the treatment of type 1 diabetes: a real-world multicentre, prospective, single-arm trial in the Netherlands. Lancet Digit Health 2024;4(6):e272-80.
  • [23] Sanz R, García P, Romero-Vivó S, Díez J, Bondia J. Near-optimal feedback control for postprandial glucose regulation in type 1 diabetes. ISA Trans 2023;133:345-52.
  • [24] Dalla Man C, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The UVA/PADOVA type 1 diabetes simulator: New features. J Diabetes Sci Technol 2014;8(1):26-34.
  • [25] Hoyos JD, Villa-Tamayo MF, Builes-Montano CE, Ramirez-Rincon A, Godoy JL, Garcia-Tirado J, et al. Identifiability of control-oriented glucose-insulin linear models: Review and analysis. IEEE Access 2021;9:69173-88.
  • [26] Heusden KV, Dassau E, Zisser HC, Seborg DE, Doyle FJ. Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans Biomed Eng 2012;59(7):1839-49.
  • [27] Colmegna P, Peńa RSS, Gondhalekar R, Dassau E, Doyle III FJ. Reducing risks in type 1 diabetes using H∞ control. IEEE Trans Biomed Eng 2014;61(12):2939-47.
  • [28] Gondhalekar R, Dassau E, Doyle III FJ. Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 2016;71:237-46.
  • [29] Laugesen C, Ranjan AG, Schmidt S, Nørgaard K. Low-dose dasiglucagon versus oral glucose for prevention of insulin-induced hypoglycemia in people with type 1 diabetes: A phase 2, randomized, three-arm crossover study. Diabetes Care 2022;45(6):1391-9.
  • [30] Moscardó V, Herrero P, Díez JL, Giménez M, Rossetti P, Georgiou P, Bondia J. Coordinated dual-hormone artificial pancreas with parallel control structure. Comput Chem Eng 2019;128:322-8.
  • [31] Goodwin GC, Medioli AM, Carrasco DS, King BR, Fu Y. A fundamental control limitation for linear positive systems with application to type 1 diabetes treatment. Automatica 2015;55:73-7.
  • [32] Castellanos LE, Balliro CA, Sherwood JS, Jafri R, Hillard MA, Greaux E, et al. Performance of the insulin-only ilet bionic pancreas and the bihormonal ilet using dasiglucagon in adults with type 1 diabetes in a home-use setting. Diabetes Care 2021;44(6):e118-20.
  • [33] Seget Sebastian, Tekielak Anna, Rusak Ewa, Jarosz-Chobot Przemysława. Commercial hybrid closed-loop systems available for a patient with type 1 diabetes in 2022. Pediatr Endocrinol Diabetes Metabol 2023;29(1):30-6.
  • [34] Kawamura T, Takamura C, Hirose M, Hashimoto T, Higashide T, Kashihara Y, et al. The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clin Pediatr Endocrinol 2015;24(4):153-65.
  • [35] Schiavon M, Man CD, Kudva YC, Basu A, Cobelli C. In silico optimization of basal insulin infusion rate during exercise: Implication for artificial pancreas. J Diabetes Sci Technol 2013;7(6):1461-9.
  • [36] Camerlingo N, Vettoreti M, Favero SDel, Facchinetti A, Sparacino G. Mathematical models of meal amount and timing variability with implementation in the type-1 diabetes patient decision simulator. J Diabetes Sci Technol 2021;15(2):346-59.
  • [37] Aiello EM, Toffanin C, Magni L, De Nicolao G. Model-based identification of eating behavioral patterns in populations with type 1 diabetes. Control Eng Pract 2022;123:105128.
  • [38] Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care 2019;42(8):1593-603.
  • [39] Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw 2015;67(1):1-48.
  • [40] R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023.
  • [41] Mollie EB, Kristensen K, JvB Koen, Magnusson A, Casper WB, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 2017;9(2):378-400.
  • [42] Arel-Bundock V. Marginaleffects: Marginal effects, marginal means, predictions, and contrasts. 2022, R package version 0.8.1. https://marginaleffects.com/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a046183b-591a-46db-a5a5-b07087b68344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.