Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents how the values of (3D) coordinates of land reference points affect the results of gravimetric measurements made from the ship in sea areas. These measurements are the basis for 3D maritime inertial navigation, improving ships' operational safety. The campaign verifying the network absolute point coordinates used as a reference point for relative marine gravity measurements was described. The obtained values were compared with catalogue values. In verification of network points 3D position the satellite data Global Satellite Navigation System (GNSS) and ground supporting systems (GBAS) was used. In this example, the height difference of the land reference point was 0.32 m. As a consequence, the offset budget of the marine campaign was affected in the range of up to 0.35 mGal. The influence on gravity free-air anomaly was not constant over the entire area covered by the campaign.
Czasopismo
Rocznik
Tom
Strony
art. no. 188592
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland
autor
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
autor
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
autor
- Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Poland
autor
- Faculty of Navigation and Naval Weapons, Polish Naval Academy, Poland
autor
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland
Bibliografia
- 1. Liu F, Li F, Jing X. INS/gravity gradient aided navigation based on gravitation field particle filter. Open Physics 2019;17:709–18. https://doi.org/10.1515/phys-2019-0073.
- 2. Zhang P, Wu L, Bao L, Wang B, Liu H, Li Q, et al. Gravity disturbance compensation for dual-axis rotary modulation inertial navigation system. Frontiers in Marine Science 2023;10. https://doi.org/10.3389/fmars.2023.1086225.
- 3. Peshekhonov VG. High-Precision Navigation Independently of Global Navigation Satellite Systems Data. Gyroscopy and Navigation 2022;13:1–6. https://doi.org/10.1134/S2075108722010059.
- 4. Ince ES, Förste C, Barthelmes F, Pflug H, Li M, Kaminskis J, et al. Gravity Measurements along Commercial Ferry Lines in the Baltic Sea and Their Use for Geodetic Purposes. Marine Geodesy 2020;43:573–602. https://doi.org/10.1080/01490419.2020.1771486.
- 5. Förste C. Marine Gravimetry Activities on the Baltic Sea in the Framework of the EU Project FAMOS. Zfv – Zeitschrift Für Geodäsie, Geoinformation Und Landmanagement 2020:287–94. https://doi.org/10.12902/zfv-0317-2020.
- 6. Wu B, Zhang C, Wang K, Cheng B, Zhu D, Li R, et al. Marine Absolute Gravity Field Surveys Based on Cold Atomic Gravimeter. IEEE Sensors Journal 2023;23:24292–9. https://doi.org/10.1109/JSEN.2023.3309499.
- 7. TOMODA Y. Gravity at sea -A memoir of a marine geophysicist-. Proceedings of the Japan Academy, Series B 2010;86:769–87. https://doi.org/10.2183/pjab.86.769.
- 8. Rotich J. K., Gachari M.K., Mundia C.N. Satellite positioning based extension of geodetic reference network to support geospatial applications. Journal of Applied Science, Engineering and Technology for Development 2018. https://doi.org/10.33803/JASETD.2017.3-1.2.
- 9. Feng D. Review of Quantum navigation. IOP Conference Series: Earth and Environmental Science 2019;237:032027–032027. https://doi.org/10.1088/1755-1315/237/3/032027.
- 10. Hoang NH. Modernization of Height System in Vietnam Using GNSS and Geoid Model. Lecture Notes in Civil Engineering, vol. 108, Springer Science and Business Media Deutschland GmbH; 2021, p. 149–66. https://doi.org/10.1007/978-3-030-60269-7_8.
- 11. Hein GW. From GPS and GLONASS via EGNOS to Galileo – Positioning and Navigation in the Third Millennium. GPS Solutions 2000;3:39–47. https://doi.org/10.1007/PL00012814.
- 12. Dautermann T, Felux M, Grosch A. Approach service type D evaluation of the DLR GBAS testbed. GPS Solutions 2012;16:375–87. https://doi.org/10.1007/s10291-011-0239-3.
- 13. Guo J, Liu X, Chen Y, Wang J, Li C. Local normal height connection across sea with ship-borne gravimetry and GNSS techniques. Marine Geophysical Research 2014;35:141–8. https://doi.org/10.1007/s11001-014-9216-x.
- 14. Peshekhonov VG, Sokolov AV, Zheleznyak LK, Bereza AD, Krasnov AA. Role of Navigation Technologies in Mobile Gravimeters Development. Gyroscopy and Navigation 2020;11:2–12. https://doi.org/10.1134/S2075108720010101.
- 15. Peshekhonov VG, Stepanov OA, editors. Methods and Technologies for Measuring the Earth’s Gravity Field Parameters. vol. 5. Cham: Springer International Publishing; 2022. https://doi.org/10.1007/978-3-031-11158-7.
- 16. Pyrchla K, Pajak M, Pyrchla J, Idczak J. Analysis of Free-Air Anomalies on the Seaway of the Gulf of Gdańsk: A Case Study. Earth and Space Science 2020;7:e2019EA000983.
- 17. Bielecka E, Pokonieczny K, Borkowska S. GIScience Theory Based Assessment of Spatial Disparity of Geodetic Control Points Location. ISPRS International Journal of Geo-Information 2020;9:148–148. https://doi.org/10.3390/ijgi9030148.
- 18. Vivek CG, Shrungeshwara TS, Jade S. GNSS and its Impact on Position Estimates. Current Science 2020;119:1503–1503. https://doi.org/10.18520/cs/v119/i9/1503-1509.
- 19. Luo X, Schaufler S, Branzanti M, Chen J. Assessing the benefits of Galileo to high-precision GNSS positioning – RTK, PPP and post-processing. Advances in Space Research 2021;68:4916–31. https://doi.org/10.1016/j.asr.2020.08.022.
- 20. Olivart I Llop JM, Moreno-Salinas D, Sánchez J. Full Real-Time Positioning and Attitude System Based on GNSS-RTK Technology. Sustainability 2020, Vol 12, Page 9796 2020;12:9796–9796. https://doi.org/10.3390/SU12239796.
- 21. Maciuk K. Aging of ground Global Navigation Satellite System oscillators. Eksploatacja i Niezawodność – Maintenance and Reliability 2022;24:371–6. https://doi.org/10.17531/EIN.2022.2.18.
- 22. Calka B, Bielecka E, Figurski M. Spatial pattern of ASG-EUPOS sites. Open Geosciences 2017;9. https://doi.org/10.1515/geo-2017-0046.
- 23. Krzyżek R, Skorupa B. Analysis of accuracy of determination of eccentric point coordinates of the KRAW permanent geodetic station in RTK GPS measuring mode with the application of the NAWGEO service of the ASG-EUPOS system. Geomatics and Environmental Engineering 2012;6:35–35. https://doi.org/10.7494/geom.2012.6.4.35.
- 24. Dawidowicz K, Krzan G, Świątek K. Urban area GPS positioning accuracy using ASG-EUPOS POZGEO service as a function of session duration. Artificial Satellites 2014;49:33–42. https://doi.org/10.2478/arsa-2014-0003.
- 25. Pyrchla K, Pyrchla J. The Use of Gravimetric Measurements to Determine the Orthometric Height of the Benchmark in the Port of Gdynia. Proceedings - 2018 Baltic Geodetic Congress, BGC-Geomatics 2018 2018:349–52. https://doi.org/10.1109/BGC-Geomatics.2018.00072.
- 26. Koivula H, Kuokkanen J, Marila S, Lahtinen S, Mattila T. Assessment of sparse GNSS network for network RTK. Journal of Geodetic Science 2018;8:136–44. https://doi.org/10.1515/jogs-2018-0014.
- 27. Mora OE, Langford M, Mislang R, Josenhans R, Chen J. Precision performance evaluation of RTK and RTN solutions: a case study. Journal of Spatial Science 2022;67:473–86. https://doi.org/10.1080/14498596.2020.1837686.
- 28. Riley S, Talbot N, Kirk G. A new system for RTK performance evaluation, IEEE; 2000, p. 231–6. https://doi.org/10.1109/PLANS.2000.838307.
- 29. El-Mowafy A. Performance Analysis of the RTK Technique in an Urban Environment. Australian Surveyor 2000;45:47–54. https://doi.org/10.1080/00050353.2000.10558803.
- 30. Sohn DH, Park KD. A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy. Journal of Korean Society for Geospatial Information System 2015;23:43–8. https://doi.org/10.7319/kogsis.2015.23.4.043.
- 31. Weng D, Ji S, Lu Y, Chen W, Li Z. Improving DGNSS Performance through the Use of Network RTK Corrections. Remote Sensing 2021;13:1621–1621. https://doi.org/10.3390/rs13091621.
- 32. Cai C, Gao Y, Pan L, Zhu J. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research 2015;56:133–43. https://doi.org/10.1016/j.asr.2015.04.001.
- 33. Choy S. High accuracy precise point positioning using a single frequency GPS receiver. Journal of Applied Geodesy 2011;5. https://doi.org/10.1515/jag.2011.008.
- 34. Tomasz H. GNSS-Warp Software for Real-Time Precise Point Positioning. Artificial Satellites 2015;50:59–76. https://doi.org/10.1515/arsa-2015-0005.
- 35. Paziewski J, Stepniak K. New On-line System for Automatic Postprocessing of Fast-static and Kinematic GNSS Data, Vilnius, Lithuania: Vilnius Gediminas Technical University Press “Technika” 2014; 2014. https://doi.org/10.3846/enviro.2014.235.
- 36. Julianto EN, Safrel I, Taveriyanto A. High Accuracy Geodetic Control Point Measurement Using GPS Geodetic With Static Methods. Jurnal Teknik Sipil Dan Perencanaan 2018;20:81–9. https://doi.org/10.15294/jtsp.v20i2.16300.
- 37. Taufik M, Yuwono, Cahyadi MN, Putra JR. Analysis level of accuracy GNSS observation processing using u-blox as low-cost GPS and geodetic GPS (case study: M8T). IOP Conference Series: Earth and Environmental Science 2019;389:012041–012041. https://doi.org/10.1088/1755-1315/389/1/012041.
- 38. Sun R, Qiu M, Liu F, Wang Z, Ochieng WY. A Dual w-Test Based Quality Control Algorithm for Integrated IMU/GNSS Navigation in Urban Areas. Remote Sensing 2022;14:2132–2132. https://doi.org/10.3390/rs14092132.
- 39. Rofatto VF, Matsuoka MT, Klein I. An Attempt to Analyse Baarda’s Iterative Data Snooping Procedure based on Monte Carlo Simulation. South African Journal of Geomatics 2017;6:416–416. https://doi.org/10.4314/sajg.v6i3.11.
- 40. Ge Z, Zhang Y, Wang F, Luo X, Yang Y. Virtual–real fusion maintainability verification based on adaptive weighting and truncated spot method. Eksploatacja i Niezawodność 2022;Vol. 24:738–46. https://doi.org/10.17531/EIN.2022.4.14.
- 41. Zhang Q, Zhao L, Zhao L, Zhou J. An Improved Robust Adaptive Kalman Filter for GNSS Precise Point Positioning. IEEE Sensors Journal 2018;18:4176–86. https://doi.org/10.1109/JSEN.2018.2820097.
- 42. Kim TK. T test as a parametric statistic. Korean Journal of Anesthesiology 2015;68:540–540. https://doi.org/10.4097/kjae.2015.68.6.540.
- 43. Kallio U, Koivula H, Lahtinen S, Nikkonen V, Poutanen M. Validating and comparing GNSS antenna calibrations. Journal of Geodesy 2019;93:1–18. https://doi.org/10.1007/s00190-018-1134-2.
- 44. Tran DT, Nguyen DH, Luong ND, Dao DT. Impact of the precise ephemeris on accuracy of GNSS baseline in relative positioning technique. VIETNAM JOURNAL OF EARTH SCIENCES 2020;43:96–110. https://doi.org/10.15625/0866-7187/15745.
- 45. Campbell S, Naeem W, Irwin GW. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control 2012;36:267–83. https://doi.org/10.1016/j.arcontrol.2012.09.008.
- 46. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność – Maintenance and Reliability 2023;25. https://doi.org/10.17531/ein/172857.
- 47. Chi B, Wang Y, Hu J, Zhang S, Chen X. Reliability assessment for micro inertial measurement unit based on accelerated degradation data and copula theory. Eksploatacja i Niezawodność – Maintenance and Reliability 2022;24:554–63. https://doi.org/10.17531/EIN.2022.3.16.
- 48. Kwon JH, Jekeli C. Gravity Requirements for Compensation of Ultra-Precise Inertial Navigation. Journal of Navigation 2005;58:479–92. https://doi.org/10.1017/S0373463305003395.
- 49. Hofmann-Wellenhof B, Moritz H. Physical geodesy. Springer Science & Business Media; 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a04486cd-efc8-47a9-b235-e1c943962f96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.