PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potassium chloride recovery from mechanically activated microcline through the chlorination roasting and leaching route

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, effects of mechanical activation in the chlorination roasting and water leaching route known as CaCl2 process and developed for the production of potassium chloride (KCl) from potassium feldspar ores were studied. A microcline containing K-feldspar ore with 10.89% K2O was first intensively dry milled by a planetary ball mill and mixed with calcium chloride (CaCl2) and then roasted at temperatures up to 1000°C to obtain KCl that will be finally dissolved by the water leaching. Potassium recovery by water leaching increased rapidly up to 800°C. At higher temperatures, the recovery decreased fast due to the evaporation of KCl. According to the K recovery values per unit energy consumed, the optimum roasting temperature was determined as 750°C and the milling time was 15 min. It was concluded that intensive milling causes mechanical activation of the microcline to reduce the chlorination roasting temperature, which triggers a rise in the K recovery by the water leaching.
Rocznik
Strony
art. no. 167500
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • İnönü University, Mining Engineering Department, Malatya, Türkiye
autor
  • Munzur University, Rare Earth Elements Research and Application Center, Tunceli, Türkiye
  • İnönü University, Mining Engineering Department, Malatya, Türkiye
Bibliografia
  • ALYOSİF, B., 2021. Study the effect of the mechanical activation on KCl production from potassium feldspar. Master of Science Thesis, İnönü University, Malatya-Türkiye.
  • ALYOSİF, B., UYSAL, T., AYDEMIR, M.K., ERDEMOĞLU, M., 2023. Contribution of mechanical activation for obtaining potassium chloride from microcline. Mining, Metallurgy & Exploration, https://doi.org/10.1007/s42461-023-00785-3.
  • AYDEMİR, M.K., 2021. Investigation of alumina production from pumice by hydrometallurgical methods. Master of Science Thesis, İnönü University Türkiye.
  • BALÁŽ, P., 1996. Influence of solid state properties on ferric chloride leaching of mechanically activated galena. Hydrometallurgy, 40, 359-368.
  • BALÁŽ, P., BOLDIŽÁROVÁ, E., ACHIMOVIČOVÁ, M., KAMMEL, R., 2000. Leaching and dissolution of a pentlandite concentrate pretreated by mechanical activation. Hydrometallurgy 57(1):85–96.
  • BARRY, T.S., UYSAL, T., BIRINCI, M., ERDEMOĞLU, M., 2019. Thermal and mechanical activation in acid leaching processes of non-bauxite ores available for alumina production - a review. Mining, Metallurgy & Exploration, 36:557–569.
  • BLS, 2023. Bureau of labour statistics. Montly electric power industry report. https://www.bls.gov/regions/midwest/data/averageenergyprices_selectedareas_table.htm [Accessed 27 April 2023].
  • BOLDYREV, V.V, TKÁČOVÁ, K., 2000. Mechanochemistry of solids. J Mater Synth Process 8, 121-132.
  • ERDEMOĞLU, M., BİRİNCİ, M., UYSAL, T., 2020. Thermal behavior of pyrophyllite ore during calcination for thermal activation for aluminum extraction by acid leaching, Clays and Clay Minerals, 68, 89-99.
  • ERDEMOĞLU, M., BİRİNCİ, M., UYSAL, T., PORGALI, E., BARRY, T.S., 2017. Acid leaching performance of mechanically activated pyrophyllite ore for Al2O3 extraction. 9th International Conference on Mechanochemistry and Mechanical Alloying, 13801-13812, Slovakia.
  • ERDEMOĞLU, M., BİRİNCİ, M., UYSAL, T., 2018. Alumina production from clay minerals: current review. Journal of Polytechnic, 21(2):387–396.
  • ESSEN, V.M., GORES, C., BLEIJENDAAL, L.P.J., ZONDAG, H.A., SCHUITEMA R., VAN HELDEN W.G.J, 2009. Characterization of salt hydrates for compact seasonal thermo chemical storage. Conference paper, Effstock2009, Stockholm.
  • FREEMAN, J.J., WANG, A., KUEBLER, K.E., JOLLFF, B., HASKIN., L.A., 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46, 1477-1500.
  • GÖKTAŞ, M., 2013. Investigating the effects of intensive milling on the production of synthetic calcium silicate from marble industry wastes, by using ceramic materials. PhD Thesis, Institute of science, Inönü University, Türkiye.
  • HEMINGWAY, B.S., KRUPKA, K.M., ROBIE, R. A., 1981. Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz * jadeite = analbite. American Mineralogist, Volume 66, pages 1202-1215.
  • JENA, S.K., DHAWAN, N., RAO, D.S., MISRA, P.K., MISHRA, B.K., DAS, B., 2014. Studies on extracion of potassium values from nepheline syenite. International Journal of Mineral Processing 133, 13-22.
  • OPENSHAW, R.E., HEMINGWAY, B.S., ROBIE, R.A., KRUPKA, K.M., 1979. A room-temperature phase transition in maximum mierocline, heat capacity measurements. Phys. Chem. Minerals, 5, 83-93.
  • POURGHAHRAMANI, P., FORSSBERG, E., 2007. Effects of mechanical activation on the reduction behavior of hematite concentrate. International Journal of Mineral Processing, 82:96–105.
  • SAMANTARY, J., ANAND, A., DASH, B., GHOSH, M.K., BEHERA, A.K., 2019. Production of potassium chloride from k-feldspar through roast-leach-solvent extraction route. Trans Indian Inst Met 72(10):2613-2622.
  • SCHINDLER, A., SCHÖNEICH, M., 2021. Application Note: Investigation of Alkali Salts with the STA 449 F5 Jupiter®. Netzsch, 95100 Selb Germany. www.netzsch.com, [Accessed 29 May 2023].
  • SERDENGEÇTİ, M. T., BAŞTÜRKCÜ, H., BURAT, F., KANGAL, M. O., 2019. The Correlation of Roasting Conditions in Selective Potassium Extraction from K-Feldspar Ore. Minerals, Special Issue: Towards Sustainability in Extractive Metallurgy, 9(2), 109-119, doi:10.3390/min9020109.
  • SERDENGEÇTİ, M.T., 2018. Potassium recovery from potassium feldspar ore. Master Thesis, Institute of Applied Sciences, İstanbul Technical University.
  • SMEKAL, A., 1942. Ritzvorgang und molekulare Festigkeit. Naturwissenschaften 30, 224-225.
  • TKÁČOVÁ, K., BALÁŽ, P., MIŠURA, B., VIGDERGAUZ, V., CHANTURIYA, V., 1993. Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate. Hydrometallurgy, 33(3):291–300.
  • TROMANS, D., MEECH, J.A., 1999. Enhanced dissolution of minerals: microtopography and mechanical activation. Minerals Engineering, 12, 609-625.
  • TÜRK, T., ÜÇERLER, Z., BURAT, F., BULUT, G., KANGAL, M. O., 2021. Extraction of Potassium from Feldspar by Roasting with CaCl2 Obtained from the Acidic Leaching of Wollastonite-Calcite Ore. Minerals, 11(12), 1369-1381, doi.org/10.3390/min11121369.
  • UYSAL, T, MUTLU, H.S., ERDEMOĞLU, M., 2016. Effects of mechanical activation of colemanite (Ca2B6O11•5H2O) on its thermal transformations. Int. J. Miner. Process. 151:51-58.
  • UYSAL, T., 2018. Investigation of activation conditions in alumina production from pyrophyllite ore by acid leaching Method. PhD Thesis, İnönü University, Inonu University, Mining Engineering Department, Malatya, Türkiye.
  • WELHAM N.J., LLEWELLYN, D.J., 1998. Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering, 11, 827-841.
  • WELHAM, N.J., 2002. Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing, 67, 187-198.
  • XIE, H., WANG, Y., JU, Y., LIANG, B., ZHU, J., ZHANG, R., LI, C., 2013. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chinese Science Bulletin, 58(1), 128-132.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a043d952-0f1a-4969-a48d-5f145633bd28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.