PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piecewise acceleration orbital modeling: a GOCE satellite case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the Precise Science Orbit (PSO) of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite, acquired via the European Space Agency, served as the reference orbit for the testing various variants of the GOCE satellite orbit modeling. The GOCE satellite positions along the reduced-dynamic PSO orbit were treated as pseudo-observations in the satellite orbit improvement process in the least squares sense. This process was realized using dedicated extended Toruń Orbit Processor software which enabled determining corrections to the orbital initial conditions and the set of parameters, necessary to determine additional empirical accelerations of the satellite in the radial-track, along track and cross-track directions. These piecewise accelerations were determined in successive equal intervals (pieces) into which the processed orbital arcs were divided. For modeling the accelerations, polynomials of different degrees were used. The obtained RMS differences between the improved orbits and the reference PSO orbit were determined for various orbital arc lengths up to 1-day. The best RMS of the fts for the 1-day arcs was in the range from 2.0 to 3.2 mm with significantly worst results for along-track direction. Based on the set of solutions determined, the number of orbital parameters for adopted accuracy thresholds and the upper limit of their number, that can be estimated depending on the length of the orbital arc, under given numerical conditions were obtained. The optimal form of the polynomial modeling of the estimated accelerations also depends partly on the length of the processed orbital arc. For shorter arcs (45 min and less), the second- third- and fourth-order polynomial gives the best results, while for longer arcs (90, 180, 360, 720 and 1440 min), zero- and first-degree polynomials are the most effective. A very promising solution with the RMS of the ft of 0.1 mm for a 1-min arc using the fourth-order polynomial was obtained in a perspective of the future use of the short arc approach to the ft of 1-day arcs. Additionally, solution variants with non-equal numbers of orbital pieces for the radial-along-and cross-track directions were obtained. In the case of the solution for an arc length of 1-day, the distribution of residuals and their statistics in the aforementioned radial-, along-and cross-track directions are presented.
Czasopismo
Rocznik
Strony
399--413
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Department of Geodesy, University of Warmia and Mazury, Olsztyn, Poland
  • Department of Geodesy, University of Warmia and Mazury, Olsztyn, Poland
Bibliografia
  • 1. Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geodesy 85(11):807–818. https://doi.org/10.1007/s00190-011-0484-9
  • 2. Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geodesy 88(11):1047–1060. https://doi.org/10.1007/s00190-014-0742-8
  • 3. Casotto S, Gini F, Panzetta F, Bardella M (2013) Fully dynamic approach for GOCE precise orbit determination. B Geofis Teor Appl 54(4):367–384. https://doi.org/10.4430/bgta0108
  • 4. Drinkwater M, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer core mission. Space Sci Rev 108:419–432. https://doi.org/10.1023/A:1026104216284
  • 5. Drożyner A (1995) Determination of orbits with Toruń Orbit Processor system. Adv Space Res 16(12):93–95. https://doi.org/10.1016/0273-1177(95)98788-P
  • 6. ESA (2010) GOCE Level 2 Product Data Handbook. European GOCE Gravity Consortium. ESA Tech. Note GO-MA-HPF-GS-0110. European Space Agency. Noordwijk.
  • 7. Eshagh M, Najafi-Alamdari M (2007) Perturbations in orbital elements of a low Earth orbiting satellite. J Earth Space Phys 33(1):1–12
  • 8. Intel Corp., Intel fortran compiler 19.1 developer guide and reference. last updated: 07/15/2020, https://software.intel.com/content/dam/develop/external/us/en/documents/19-1-fortran-compiler-devguide.pdf
  • 9. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling of low earth satellites using the global positioning system. J Geod 80:47–60. https://doi.org/10.1007/s00190-006-0029-9
  • 10. Jäggi A (2007) Pseudo-stochastic corbit modeling of low earth satellites using the global positioning system. Tom 73 von Geodätisch – geophysikalische Arbeiten in der Schweiz. Schweizerische Geodätische Kommission. ISBN: 3908440173, 9783908440178
  • 11. Kornfeld RP, Arnold BW, Gross MA, Dahya NT, Klipstein WM (2019) GRACE-FO: the gravity recovery and climate experiment follow-on mission. J Spacecraft Rockets 56(3):931–951. https://doi.org/10.2514/1.A34326
  • 12. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG -Grace2010: the new GRACE gravity field release computed in Bonn. Geophys Res Abstr, 12
  • 13. Melbourne W, Anderle R, Feissel M, King R, McCarthy D, Smith D, Tapley B, Vincente R (1983) Project MERIT Standards, Circ. 167, U.S. Naval Observatory, Washington, D.C.
  • 14. Reigber Ch, Jochmann H, Wünsch J, Petrovic S, Schwinzer P, Barthelmes F, Neumayer KH, König R, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth gravity field and seasonal variability from CHAMP. Earth observation with CHAMP– results from three years in orbit. Springer, Berlin, pp 25–30
  • 15. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790. https://doi.org/10.1007/s00190-011-0500-0
  • 16. Sidorov D, Dach R, Polle B, Prange L, Jäggi A (2020) Adopting the empirical CODE orbit model to Galileo satellites. Adv Space Res 66(12):2799–2811
  • 17. Standish E M, Newhall X X, Williams J G, Yeomans D K (1992) Orbital ephemerides of the sun, moon and planets. In: Explanatory Supplement to the astronomical almanac. Edited by P.K. Seidelmann. Mill Valley, Ca: University Science Books, 279–323
  • 18. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. https://doi.org/10.1029/2004GL019920
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0424ec6-c88d-4fd3-8118-57ba59f4d515
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.