PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sampling and interpolation of cumulative distribution functions of Cantor sets in [0, 1]

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant Borel probability measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere intersection with respect to their corresponding invariant measures.
Wydawca
Rocznik
Strony
85--109
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Department of Mathematics, University of Wisconsin Madison, 480 Lincoln Drive, Madison, WI 53706, USA
autor
  • Department of Mathematics, Iowa State University, 411 Morrill Road, Ames, IA 50011, USA
  • Department of Mathematics, Milwaukee School of Engineering, 500 E. Kilbourn Ave., Milwaukee, WI 53202, USA
  • Department of Mathematics, Iowa State University, 411 Morrill Road, Ames, IA 50011, USA
  • Department of Mathematics, Concordia College, 901 8th St. S. Moorhead, MN 56562, USA
  • Department of Mathematics, Iowa State University, 411 Morrill Road, Ames, IA 50011, USA
Bibliografia
  • [1] J. Benedetto and P. J. S. G. Ferriera (Eds.), Modern Sampling Theory, Birkhauser Boston, Boston, MA, 2001.
  • [2] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev. 43(2001), no. 4, 585-620.
  • [3] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30(1981), no. 5, 713-747.
  • [4] R. DiMartino and W. Urbina, On Cantor-like sets and Cantor-Lebesgue singular functions, arXiv:1403.6554, 2014.
  • [5] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, Cambridge, 2013.
  • [6] N. N. Huang and R. S. Strichartz, Sampling theory for functions with fractal spectrum, Experiment. Math. 10(2001), no. 4, 619-638.
  • [7] R. J. Ravier and R. S. Strichartz, Sampling theory with average values on the Sierpinski gasket, Constr. Approx. 44(2016), no. 2, 159-194.
  • [8] J. E. Herr and E. S. Weber, Fourier series for singular measures, Axioms 6(2017), no. 2, 7. DOI: https://doi.org/10.3390/axioms6020007.
  • [9] R. Oberlin, B. Street, and R. S. Strichartz, Sampling on the Sierpinski gasket, Experiment. Math. 12(2003), no. 4, 403-418.
  • [10] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77(1916), no. 3, 313-352.
  • [11] S. Kolouri, S. R. Park, and G. K. Rohde, The radon cumulative distribution transform and its application to imagec lassification, IEEE Trans. Image Process. 25(2016), no. 2, 920-934, DOI: https://doi.org/10.1109/TIP.2015.2509419.
  • [12] S. R. Park, S. Kolouri, S. Kundu, and G. K. Rohde, The cumulative distribution transform and linear pattern classification, 2015, CoRR, abs/1507.05936.
  • [13] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2(1986), no. 4, 303-329.
  • [14] P. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford University Press, Oxford, 2010.
  • [15] S. N. Harding and A. W. N. Riasanovsky, Moments of the weighted Cantor measures, Demonstr. Math. 52(2019), 256-273.
  • [16] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line. I. Formulation, Fractals 17(2009), no. 1, 53-81
  • [17] A. K. Golmankhaneh and A. Fernandez, Random variables and stable distributions on fractal cantor sets, Fractal Fract. 3(2019), no. 2, 31, DOI: https://doi.org/10.3390/fractalfract3020031.
  • [18] A. K. Golmankhaneh and C. Tunç, Stochastic differential equations on fractal sets, Stochastics 92(2020), no. 8, 1244-1260.
  • [19] B. Broxson, The Kronecker product, Master’s thesis, University of North Florida, UNF Graduate Theses and Dissertations, 25, 2006.
  • [20] Y. Peres and B. Solomyak, Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc. 350(1998), no. 10, 4065-4087.
  • [21] C. G. T. de A. Moreira and J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. Math. (2)154 (2001), no. 1, 45-96.
  • [22] W. M. Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen, Acta Arith. 7 (1961/1962), 299-309.
  • [23] A. D. Pollington, The Hausdor ffdimension of a set of normal numbers. II, J. Austral. Math. Soc. Ser. A 44(1988), 259-264.
  • [24] J. W. S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7(1959), 95-101.
  • [25] M. Hochman and P. Shmerkin, Equidistribution from fractal measures, Invent. Math. 202(2015), no. 1, 427-479.
  • [26] B. Host, Nombres normaux, entropie, translations, Israel J. Math. 91(1995), no. 1-3, 419-428.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0411490-d65b-42c4-a9db-e5715bf42d0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.