PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of nutrient contents in tomato fruits under the influence of increasing intensity of manganese nutrition

Autorzy
Identyfikatory
Warianty tytułu
PL
Zmiany zawartości składników pokarmowych w owocach pomidora pod wpływem wzrastającej intensywności żywienia manganem
Języki publikacji
EN
Abstrakty
EN
The aim of conducted in years 2008-2012 studies was to assess the efficiency of application of increasing manganese levels on the nutritive value of tomato fruits (Lycopersicon esculentum Mill. cvs. ‘Alboney F1’ and ‘Emotion F1’), expressed in the contents of macro- and micronutrients. Plants were grown in rockwool with application of nutrient solution characterized the following chemical composition (in [mg dm–3]): N-NH4 2.2, N-NO3 - 230, P - 50, K - 430, Ca - 145, Mg - 65, Cl - 35, S-SO4 - 120, Fe - 2.48, Zn - 0.50, Cu - 0.07, pH -5.50, EC - 3.00 mS cm–1. The following manganese plant nutrition levels were examined (in mg Mn · dm–3): 0.06 (control), 0.3, 0.6, 1.2 (Experiment I), 2.4, 4.8, 9.6 and 19.2 (Experiment II); (denoted as Mn-0, Mn-0.3, Mn-0.6, Mn-1.2, Mn-2.4, Mn-4.8, Mn-9.6; Mn-19.2). The source of manganese was manganese sulfate (MnSO4 · H2O, 32.3% Mn). The nutritive value of tomato fruits changed significantly under the influence of the application of wide range of manganese concentrations. It was found a significant reduction of the content of phosphorus (Exp. I, II), potassium (Exp. II), calcium (Exp. I, II) and magnesium (Exp. I, II). Manganese influence on the decreasing content of other metallic micronutrients (Fe, Zn, Cu) in fruits. Cultivar had a significantly influence on the content of: nitrogen (except Mn-2.4, Mn-4.8, Mn-9.6), potassium (in Exp. II, except Mn-4.8), calcium (except for Mn-0.6, Mn-2.4), magnesium (except Mn-0.3 and Mn-2.4), iron (except Mn-1.2), manganese and zinc (except control combination) and copper (except Mn-0.6 and Mn-1.2). The highest contents of N, Ca and Mg in fruits were recorded for the application of Mn-0, while for P and K - at 0.3 mg Mn dm–3, whereas it was lowest for all these nutrients (except N) in the case of Mn-19.2 (Exp. II). The reduction of nutrient contents amounted to (% changes: from the lowest content to the highest content): N (11.3), P (48.1), K (24.8), Ca (75.4), Mg (57.5), Fe (59.2), Zn (65.4) and Cu (43.7).
PL
Celem przeprowadzonych w latach 2008-2012 badań była ocena skuteczności stosowania wzrastających stężeń manganu na wartość odżywczą owoców pomidora (Lycopersicon esculentum Mill. cv. ‘Alboney F1’ i ‘Emotion F1’), wyrażoną zawartością w nich makro- i mikroskładników. Rośliny uprawiano w wełnie mineralnej, przy zastosowaniu pożywki o następującym składzie (w [mg · dm–3]): N-NH4 - 2,2, N-NO3 - 230, P - 50, K - 430, Ca - 145, Mg - 65, Cl - 35, S-SO4 - 120, Fe - 2,48, Zn - 0,50, Cu - 0,07, pH - 5,50, EC - 3,00 mS · cm–1. Badano następujące poziomy żywienia roślin manganem (w [mg Mn dm–3]): 0,08 (kontrola); 0,3; 0,6; 1,2 (Eksperyment I); 2,4; 4,8; 9,6; 19,2 (Eksperyment II; opisane jako Mn-0, Mn-0,3, Mn-0,6, Mn-1,2, Mn-2,4, Mn-4,8, Mn-9,6; Mn-19,2). Źródłem manganu był siarczan manganawy (MnSO4 · H2O, 32,3% Mn). Wartość odżywcza owoców pomidora istotnie zmieniała się pod wpływem stosowania szerokiego zakresu stężeń manganu. Wykazano znaczne obniżenie zawartości fosforu (Eksperyment I, II), potasu (Eksperyment II), wapnia (Eksperyment I, II) i magnezu (Eksperyment I, II). Mangan wpływał na obniżenie zawartość pozostałych mikroskładników metalicznych (Fe, Zn, Cu) w owocach. Odmiana miała istotny wpływ na zawartość: azotu (poza Mn-2,4, Mn-4,8, Mn-9,6), potasu (Eksperyment II poza Mn-4,8), wapnia (poza Mn-0,6, Mn-2,4), magnezu (poza Mn-0,3 i Mn-2,4), żelaza (poza Mn-1,2), manganu i cynku (poza kombinacją kontrolną) oraz miedzi (poza Mn-0,6 i Mn-1,2). Największą zawartość N, Ca i Mg w owocach stwierdzono w przypadku aplikacji Mn-0, podczas gdy P i K - przy 0,3 mg Mn · dm–3, a najmniejsze zawartości składników (poza N) w przypadku Mn-19.2 (Eksperyment II). Obniżenie zawartości składników wynosiło (% zmian składnika: zawartość najmniejsza do zawartości największej): N (11,3); P (48,1); K (24,8); Ca (75,4); Mg (57,5); Fe (59,2); Zn (65,4); Cu (43,7).
Rocznik
Strony
297--307
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
  • Department of Plant Nutrition, University of Life Sciences in Poznan, ul. Zgorzelecka 4, 60-199 Poznań, Poland
Bibliografia
  • [1] Ducic T, Polle A. Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol. 2005;17:103-112. DOI: http://dx.doi.org/10.1590/S1677-042020050001 00009
  • [2] Humphries JM, Stangoulis JCR, Graham RD. Manganese. In: Handbook of Plant Nutrition Barker AV, Pilbeam DJ, editor. Boca Raton FL: Taylor & Francis Group; 2007:351-374.
  • [3] Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr. 2010; 10(40): 476-494. DOI: http://dx.doi.org/10.4067/S0718-95162010000200008
  • [4] Lidon FC, Barreiro M, Ramalho J. Manganese accumulation in rice: implications for photosynthetic functioning. J. Plant Physiol. 2004;161:1235-1244. DOI:10.1016/j.jplph. 2004.02.003
  • [5] Savvas D, Papastavrou D, Ntatsi G, Ropokis A, Olympios C. Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Hort Science. 2009;44(7):1978-1982.
  • [6] Shenker M., Plessner OE, Tel-Or E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol. 2004;161: 197-202. DOI: http://dx.doi.org/10.1078/0176-1617-00931
  • [7] Gad N, Kandil H. Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agric Biol J N Am. 2010;1(5):1069-1075. DOI: 10.5251/abjna.2010.1.5.1069.1075.
  • [8] Salam MA, Siddique MA, Rahim MA, Rahman MA, Saha MG. Quality of tomato (Lycopersicon esculentum Mill.) as influenced by boron and zinc under different levels of NPK fertilizers. Bangladesh J Agril Res. 2010;35(3):475-488. DOI:10.3329/bjar.v35i3.6454.
  • [9] Jędrszczyk E. Effect of potassium foliar nutrition on changes in the content of carotenoid pigments and on some parameters of the nutritional value of tomato fruit. Vegetable Crops Res Bull. 2010;72:105-114. DOI: 10.2478/v10032-010-0010-2.
  • [10] Główny Urząd Statystyczny. Sytuacja gospodarstw domowych w 2011 r. w świetle wyników badania budżetów gospodarstw domowych. Warszawa 2012:1-20.
  • [11] Jarosz Z, Michałojć Z, Dzida K. Changes in the chemical composition of the rhizosphere of tomato grown on inert substrates in a prolonged cycle. J Elem. 2011;16(3):387-396. DOI: 10.5601/jelem.2011.16.3.04.
  • [12] Jarosz Z, Dzida K, Nurzyńska-Wierdak R. Possibility of reusing expanded clay in greenhouse tomato cultivation. Part II. Changes in the composition of nutrients in the root environment and leaves. Acta Sci Pol Hortorum Cultus. 2012;11(6):131-143.
  • [13] Kowalczyk K, Gajc-Wolska J. Effect of the kind of growing medium and transplant grafting on the cherry tomato yielding. Acta Sci Pol. Hortorum Cultus. 2011;10(1):61-70.
  • [14] Breś W, Kleiber T, Trelka T. Quality of water used for drip irrigation and fertigation of horticultural plants. Folia Hort. 2010;22(2):67-74. DOI: 10.2478/fhort-2013-0161.
  • [15] Górski J. Kształtowanie się jakości wód podziemnych utworów czwartorzędowych w warunkach naturalnych oraz wymuszonych eksploatacją. Warszawa: IKŚ; 1981.
  • [16] Kowalczyk W, Dyśko J, Felczyńska A. Ocena stopnia zanieczyszczenia składnikami nawozowymi wody z ujęć głębinowych na terenach o skoncentrowanej produkcji szklarniowej. http://www.inhort.pl/files/nowosci_warzywnicze/2010/tom_51/nw51_3.pdf.
  • [17] Metody badań laboratoryjnych w stacjach chemiczno-rolniczych. Cz. III. Badanie gleb, ziemi podłoży spod warzyw i kwiatów oraz części wskaźnikowych roślin w celach diagnostycznych. Puławy: IUNG; 1983:28-81.
  • [18] Kleiber T. Influence of manganese on yielding of tomato (Lycopersicon esculentum Mill.) cultivated in rockwool. Nauka Przyr Technol. 2014:8(2):14.
  • [19] Kleiber T, Markiewicz B, Niewiadomska A. Organic substrates for intensive horticultural cultures: Yield and nutrient status of plants, microbiological parameters of substrates. Pol J Environ Stud. 2012;21(5):1261-1271.
  • [20] Chapagain BP, Wiesman Z. Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Scientia Horticulturae. 2004;99:279-288. DOI:10.1016/S0304-4238(03)00109-2.
  • [21] Fanasca S, Colla G, Maiani G, Venneria E, Rouphael Y, Azzini E, et al. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J Agric Food Chem. 2006;54:4319-4325. DOI: 10.1021/jf0602572.
  • [22] Nzanza B. Yield and quality of tomato as influenced by differential Ca, Mg and K nutrition. Pretoria: Department of Plant Production and Soil Science. Faculty of Natural and Agricultural Sciences, University of Pretoria; 2010.
  • [23] Pivot D, Reist A, Gillioz JM, Ryser JP. Water quality, climatic environment and mineral nutrition of tomato (Lycopersicon esculentum) in closed soilless cropping system. Acta Hort. 1998;458: 207-214.
  • [24] Olaniyi JO, Akanbi WB, Adejumo TA, Akande OG. Growth, fruit yield and nutritional quality of tomato varieties. Afric J Food Sci. 2010;4(6):398-402. DOI: 10.5897/AJFS.
  • [25] Premuzic Z, Bargiela M, Garcia A, Rendina A, Iorio A. Calcium, iron, potassium, phosphorus and vitamin C content of organic and hydroponic tomatoes. Hort Science. 1998;33(2):255-257.
  • [26] Nwajei GE, Okwagi P, Nwajei RI, Obi-Iyeke GE. Analytical assessment of trace elements in soils, tomato leaves and fruits in the vicinity of paint industry. Nigeria Res J Rec Sci. 2012;1(4):22-26.
  • [27] Rozporządzenie Komisji (WE) NR 1881/2006 z dnia 19 grudnia 2006 r. ustalające najwyższe dopuszczalne poziomy niektórych zanieczyszczeń w środkach spożywczych (DzU L 364 z 20.12.2006, s. 5).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0387a14-2b4a-414d-9510-057a1e681455
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.