PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Stability of pH and the Concentrations of Iron and Manganese in Acid Mine Drainage Following Coal Fly Ash and Empty Fruit Bunch of Oil Palm Treatments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
AMD (acid mine drainage) with low pH and high content of heavy metals is a serious environmental problem in mining activities. Proper AMD management is crucial to ensure compliance with the standards of environmental quality before allowing the flow to the public water system. The objective of this study was to assess the efficacy of increasing pH and decreasing Fe alongside the concentrations of Mn in AMD with the addition of coal fly ash (CFA) and empty fruit bunch of oil palm (EFBOP). A total of four treatments, namely: (1) control (soil without treatment), (2) soil+EFBOP, (3) soil+CFA, and (4) soil+EFBOP+CFA were tested for the ability to improve AMD quality in a batch reactor experiment for 90 days. Weekly observations were carried out for pH, Fe, and Mn concentrations during the experiment, where part of AMD in the reactor was drained and replaced with fresh ones. The results showed that single treatment of EFBOP or CFA caused a pH increase at 2.8 to 5.1–5.4 and 6.3–6.8, respectively. Furthermore, a greater increase occurred from 2.8 to 7.0–7.8 when EFBOP was combined with CFA application. This combination also showed a greater reduction in the concentrations of Fe and Mn compared to the single treatment of EFBOP or CFA. The increase in pH and decrease in Fe alongside the Mn concentrations began in the 3rd week, and this effect was stable during the 90 days of the experiment. The results underscore the potential of EFBOP and CFA as agricultural and industrial wastes in long-term AMD management.
Rocznik
Strony
38--48
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
  • Center for Post-mining Land Studies, Lambung Mangkurat University, Jalan Jenderal Achmad Yani KM 36 Simpang Empat Banjarbaru 70714, South Kalimantan, Indonesia
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
autor
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Agroecotechnology Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
autor
  • Mining Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Center for Post-mining Land Studies, Lambung Mangkurat University, Jalan Jenderal Achmad Yani KM 36 Simpang Empat Banjarbaru 70714, South Kalimantan, Indonesia
  • Soil Science Study Program, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
  • Doctoral Program of Agricultural Science, Postgraduate Program Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru 70714, Kalimantan Selatan, Indonesia
Bibliografia
  • 1. Abu-Bakar R., Darus S.Z., Kulaseharan S., Jamaluddin N. 2011. Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutrient Cycling in Agroecosystems, 893, 341–349. https://doi.org/10.1007/ s10705-010-9398-9
  • 2. Arce G., Montecinos M., Guerra P., Escauriaza C., Coquery M., Pastén P. 2017. Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization. Chemosphere, 180, 574–583. https://doi. org/10.1016/j.chemosphere.2017.03.107
  • 3. Barnhisel R., Bertsch P.M. 1982. Aliminium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (Eds.) Methods of soil analysis. part 2: chemical and microbiological properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Wisconsin, USA, pp 275–300.
  • 4. Ben-Ali H.E., Neculita C.M., Molson J.W., Maqsoud A., Zagury G.J. 2019. Performance of passive systems for mine drainage treatment at low temperature and high salinity: A review. Minerals Engineering, 134, 325–344. https://doi.org/10.1016/j. mineng.2019.02.010
  • 5. Blake G.R., Hartge K.H. 1986. Bulk density. In: Klute, A. (Ed.) Methods of soil analysis part 1: physical and mineralogical methods. American Society of Agronomy-Soil Science Society of America, Inc. Madision, WI., pp 363-375.
  • 6. Bremer J.M., Mulvaney C.S. 1982. Nitrogen-total. In: Page, A.L. and Keeney, D.R. (Eds.) Methods of soil analysis part 2: chemical and biological methods. Soil Science Society of America Inc. Madison WI., pp 595–709.
  • 7. Chen H., Xiao T., Ning Z., Li Q., Xiao E., Liu Y., Xiao Q., Lan X., Ma L., Lu F. 2020. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. Bioresource Technology, 317, 123985. https://doi.org/10.1016/j. biortech.2020.123985
  • 8. Chesson A. 1981. Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. Journal of the Science of Food and Agriculture, 328, 745–758. https://doi.org/10.1002/ jsfa.2740320802
  • 9. Choppala G., Kunhikrishnan A., Seshadri B., Park J.H., Bush R., Bolan N. 2018. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260. https://doi.org/10.1016/j. gexplo.2016.07.012
  • 10. Choudhury B.U., Malang A., Webster R., Mohapatra K.P., Verma B.C., Kumar M., Das A., Islam M., Hazarika S. 2017. Acid drainage from coal mining: Effect on paddy soil and productivity of rice. Science of The Total Environment, 583, 344–351. https://doi.org/10.1016/j.scitotenv.2017.01.074
  • 11. Cooper J., Greenberg I., Ludwig B., Hippich L., Fischer D., Glaser B., Kaiser M. 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295, 106882. https://doi.org/10.1016/j. agee.2020.106882
  • 12. Daraz U., Li Y., Ahmad I., Iqbal R., Ditta A. 2023. Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere, 311, 137089. https://doi.org/10.1016/j. chemosphere.2022.137089
  • 13. Elghali A., Benzaazoua M., Bouzahzah H., Bussière B. 2021. Laboratory study on the effectiveness of limestone and cementitious industrial products for acid mine drainage remediation. Minerals, 11.
  • 14. Elias M.A., Hadibarata T., Sathishkumar P. 2021. Modified oil palm industry solid waste as a potential adsorbent for lead removal. Environmental Chemistry and Ecotoxicology, 3, 1–7. https://doi. org/10.1016/j.enceco.2020.10.003
  • 15. Furr A.K., Parkinson T.F., Hinrichs R.A., Van Campen D.R., Bache C.A., Gutenmann W.H., St. John L.E., Pakkala I.S., Lisk D.J. 1977. National survey of elements and radioactivity in fly ashes. Absorption of elements by cabbage grown in fly ash-soil mixtures. Environmental Science & Technology, 1113, 1194–1201. https://doi.org/10.1021/ es60136a006
  • 16. Gee G.W., Bander J.W. 1986. Particle size analysis. In: Klute, A. (Ed.) Method of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Society of America and Soil Science Society of America. Madison, pp 234–289.
  • 17. Gitari W.M., Petrik L.F., Akinyemi S.A. 2018. Treatment of acid mine drainage with coal fly ash: exploring the solution chemistry and product water quality. In: Akinyemi, S.A. and Gitari, W.M. (eds.) Coal Fly Ash Beneficiation: Treatment of Acid Mine Drainage with Coal Fly Ash. IntechOpen, pp 79–99.
  • 18. Gitari W.M., Petrik L.F., Etchebers O., Key D.L., Iwuoha E., Okujeni C. 2008. Passive neutralisation of acid mine drainage by fly ash and its derivatives: A column leaching study. Fuel, 878, 1637–1650. https://doi.org/10.1016/j.fuel.2007.08.025
  • 19. Grandy A.S., Erich M.S., Porter G.A. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biology & Biochemistry, 325, 725–727. https://doi.org/10.1016/S0038-0717(99)00203-5
  • 20. Jiao Y., Zhang C., Su P., Tang Y., Huang Z., Ma T. 2023. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, 1240–1260. https://doi.org/10.1016/j.psep.2022.12.083
  • 21. Jones S.N., Cetin B. 2017. Evaluation of waste materials for acid mine drainage remediation. Fuel, 188, 294–309. https://doi.org/10.1016/j. fuel.2016.10.018
  • 22. Kalombe R.M., Ojumu T.V., Katambwe V.N., Nzadi M., Bent D., Nieuwouldt G., Madzivire G., Kevern J., Petrik L.F. 2020. Treatment of acid mine drainage with coal fly ash in a jet loop reactor pilot plant. Minerals Engineering, 159, 106611. https:// doi.org/10.1016/j.mineng.2020.106611
  • 23. Keller V., Stopić S., Xakalashe B., Ma Y., Ndlovu S., Mwewa B., Simate G.S., Friedrich B. 2020. Effectiveness of fly ash and red mud as strategies for sustainable acid mine drainage management. Minerals, 108. https://doi.org/10.3390/min10080707
  • 24. Kim Y.S., Park C.R. 2016. Titration Method for the Identification of Surface Functional Groups. In: Inagaki, M. (ed.) Materials Science and Engineering of Carbon: Characterization. Elsevier. Amsterdam, pp 273–286.
  • 25. Knudsen D., Peterson G.A. 1982. Lithium, sodium dan potassium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (Eds.) Methods of Soil Analysis: Part 2 Chemical and Biological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, pp 225–246.
  • 26. Kumari S., Maiti S.K. 2022. Nitrogen recovery in reclaimed mine soil under different amendment practices in tandem with legume and non-legume revegetation: A review. Soil Use and Management, 382, 1113–1145. https://doi.org/10.1111/sum.12787
  • 27. Lanyon L.E., Heald W.R. 1982. Magnesium, calcium, strintium and barium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (Eds.) Methods of Soil Analysis: Part 2 Chemical and Biological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, pp 247–274.
  • 28. Laxmidhar P., Subhakanta D. 2020. Characterization and utilization of coal fly ash: a review. Emerging Materials Research, 93, 921–934. https://doi. org/10.1680/jemmr.18.00097
  • 29. Lazareva E.V., Myagkaya I.N., Kirichenko I.S., Gustaytis M.A., Zhmodik S.M. 2019. Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of The Total Environment, 660, 468–483. https://doi. org/10.1016/j.scitotenv.2018.12.467
  • 30. Lebepe J., Oberholster P.J., Ncube I., Smit W., LuusPowell W.J. 2020. Metal levels in two fish species from a waterbody impacted by metallurgic industries and acid mine drainage from coal mining in South Africa. Journal of Environmental Science and Health, Part A, 554, 421–432. https://doi.org/10.10 80/10934529.2019.1704604
  • 31. Li H., Dong X., da Silva E.B., de Oliveira L.M., Chen Y., Ma L.Q. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modif ications. Chemosphere, 178, 466–478. https://doi. org/10.1016/j.chemosphere.2017.03.072
  • 32. Liu X., Bai Z., Zhou W., Cao Y., Zhang G. 2017. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecological Engineering, 98, 228–239. https://doi.org/10.1016/j. ecoleng.2016.10.078
  • 33. McLean E.O. 1982. Soil pH and lime requirement. In: Page, A.L. and Keeney, D.R. (eds.) Methods of Soil Analysis Part 2: Chemical and Biological Properties. Soil Science Society of America. Madison WI., pp 199–224.
  • 34. Mokgehle T.M., Gitari W.M., Tavengwa N.T. 2019. Synthesis of di-carboxylic acid functionalized zeolites from coal fly ash for Cd (II) removal from acid mine drainage using column studies approach. Journal of Environmental Chemical Engineering, 76, 103473. https://doi.org/10.1016/j.jece.2019.103473
  • 35. Mujtaba-Munir M.A., Liu G., Yousaf B., Ali M.U., Abbas Q., Ullah H. 2020. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere, 240, 124845. https://doi. org/10.1016/j.chemosphere.2019.124845
  • 36. Mungazi A.A., Gwenzi W. 2019. Cross-layer leaching of coal fly ash and mine tailings to control acid generation from mine wastes. Mine Water and the Environment, 383, 602–616. https://doi. org/10.1007/s10230-019-00618-0
  • 37. Nasir S., Ibrahim E., Arief A. 2016. Design and experimental testing of small-scale acid mine drainage treatment plant. Journal of Materials and Environmental Science, 8, 2912–2918.
  • 38. Neff A.N., DeNicola D.M., Maltman C. 2021. Passive treatment for acid mine drainage partially restores microbial community structure in different stream habitats. in: Water, Vol. 13.
  • 39. Nelson D.W., Sommers L.E. 1996. Total carbon, organic carbon and organic matter. In: Sparks, D.L. (ed.) Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America-American Society of Agronomy Inc. Madison WI., pp 961–1011.
  • 40. Neswati R., Putra B.D.H., Jayadi M., Ardiansyah A. 2022. Using of oil palm empty fruit bunch compost and mycorrhizae arbuscular for improving the fertility of nickel post-mining soil. Journal of Ecological Engineering, 232, 86–96. https://doi. org/10.12911/22998993/144472
  • 41. Noirot L.M., Müller-Stöver D.S., Wahyuningsih R., Sørensen H., Sudarno, Simamora A., Pujianto, Suhardi, Caliman J.-P. 2022. Impacts of empty fruit bunch applications on soil organic carbon in an industrial oil palm plantation. Journal of Environmental Management, 317, 115373. https://doi. org/10.1016/j.jenvman.2022.115373
  • 42. Noor I., Arifin Y.F., Priatmadi B.J., Saidy A.R. 2020. Oil palm empty fruit bunch as the selected organic matter in developing the Swampy forest system for passive treatment of acid mine drainage. Ecology, Environment and Conservation, 263, 1424–1431.
  • 43. Núñez-Gómez D., Rodrigues C., Lapolli F.R., Lobo-Recio M.Á. 2019. Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 71, 102787. https://doi.org/10.1016/j.jece.2018.11.032
  • 44. Olsen S.R., Sommers L.E. 1982. Phosphorus. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., and Soil Science Society of America, Inc. Madison, Wisconsin USA, pp 403–430.
  • 45. Olson R.V., Ellis R. 1982. Iron. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (Eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, Wisconsin USA, pp 301–312.
  • 46. Page A.L., Elseewi A.A., Straughan I.R. 1979. Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts. In: F.A, G. and J.D., G. (eds.) Residue Reviews. Springer. New York, pp.
  • 47. Plank C.O., Martens D.C. 1974. Boron availability as influenced by application of fly ash to soil. Soil Science Society of America Journal, 386, 974–977. https://doi.org/10.2136/ sssaj1974.03615995003800060038x
  • 48. Qureshi A., Jia Y., Maurice C., Öhlander B. 2016. Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 2317, 17083–17094. https://doi. org/10.1007/s11356-016-6862-3
  • 49. Rambabu K., Banat F., Pham Q.M., Ho S.-H., Ren N.-Q., Show P.L. 2020. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
  • 50. Rhoades J.D. 1982. Cation exchange capacity. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (Eds.) Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Wisconsin, pp 149–158.
  • 51. Saidy A.R., Hayati A., Septiana M. 2020. Different effects of ash application on the carbon mineralization and microbial biomass carbon of reclaimed mining soils. Journal of Soil Science and Plant Nutrition, 10, 10011012. https://doi.org/10.1007/s42729-020-00187-0
  • 52. Senoro D.B., Bonifacio P.B., Mascareñas D.R., Tabelin C.B., Ney F.P., Lamac M.R.L., Tan F.J. 2020. Spatial distribution of agricultural yields with elevated metal concentration of the island exposed to acid mine drainage. Journal of Degraded and Mining Lands Management, 82, 2551–2558. https:// doi.org/10.15243/jdmlm.2021.082.2551
  • 53. Sepaskhah A.R., Tabarzad A., Fooladmand H.R. 2010. Physical and empirical models for estimation of specific surface area of soils. Archives of Agronomy and Soil Science, 563, 325–335. https:// doi.org/10.1080/03650340903099676
  • 54. Sheoran A., Sheoran V. 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 192, 105116. https://doi.org/10.1016/j.mineng.2005.08.006
  • 55. Shirin S., Jamal A., Emmanouil C., Yadav A.K. 2021. Assessment of characteristics of acid mine drainage treated with Fly Ash. Applied Sciences, 119. https://doi.org/10.3390/app11093910
  • 56. Singh S., Chakraborty S. 2020. Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India. Journal of Hazardous Materials, 397, 122719. https://doi.org/10.1016/j.jhazmat.2020.122719
  • 57. Tabelin C.B., Uyama A., Tomiyama S., VillacorteTabelin M., Phengsaart T., Silwamba M., Jeon S., Park I., Arima T., Igarashi T. 2022. Geochemical audit of a historical tailings storage facility in Japan: Acid mine drainage formation, zinc migration and mitigation strategies. Journal of Hazardous Materials, 438, 129453. https://doi.org/10.1016/j. jhazmat.2022.129453
  • 58. Trifi M., Gasmi A., Carbone C., Majzlan J., Nasri N., Dermech M., Charef A., Elfil H. 2022. Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia. Environmental Science and Pollution Research, 2958, 87490–87508. https://doi. org/10.1007/s11356-022-21890-8
  • 59. Vasquez Y., Escobar M.C., Neculita C.M., Arbeli Z., Roldan F. 2016. Selection of reactive mixture for biochemical passive treatment of acid mine drainage. Environmental Earth Sciences, 757, 576. https://doi.org/10.1007/s12665-016-5374-2
  • 60. Vasquez Y., Neculita C.M., Caicedo G., Cubillos J., Franco J., Vásquez M., Hernández A., Roldan F. 2022. Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste. Chemosphere, 291, 133051. https://doi. org/10.1016/j.chemosphere.2021.133051
  • 61. Weinberg R., Coyte R., Wang Z., Das D., Vengosh A. 2022. Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel, 330, 125675. https://doi.org/10.1016/j.fuel.2022.125675
  • 62. Yang Z., Dong Y., Li Z. 2020. Acid mine drainage remediation with simulated permeable reactive barrier filled with fly ash and its composite materials as reactive media. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–14. https://doi.org/10.1080/15567036.2020.1801901
  • 63. Zheng X., Lu Y., Xu J., Geng H., Li Y. 2023. Assessment of heavy metals leachability characteristics and associated risk in typical acid mine drainage (AMD)-contaminated river sediments from North China. Journal of Cleaner Production, 413, 137338. https://doi.org/10.1016/j.jclepro.2023.137338
  • 64. Zimar Z., Robert D., Zhou A., Giustozzi F., Setunge S., Kodikara J. 2022. Application of coal fly ash in pavement subgrade stabilisation: A review. Journal of Environmental Management, 312, 114926. https://doi.org/10.1016/j.jenvman.2022.114926
  • 65. Zubaidah S., Putri Hartoyo A.P., Sihombing J.K., Herliyana E.N., Darmawan S., Sari N.R., Prabowo M.N.I., Hermawan I., Maulida I., Solikhin A. 2021. Oil palm empty fruit bunch valorization for activated and non-activated carbon nanoparticles and its heavy-metal-removal efficiency. Water Science and Technology, 8311, 2652–2668. https://doi. org/10.2166/wst.2021.166
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0372cf6-0626-447b-9b0f-05131ab38881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.