PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the regularity criteria of the weak solutions to the Boussinesq equations involving the horizontal component of velocity or the horizontal derivatives of the two components of velocity in anisotropic Lorentz spaces. This result reveals that the velocity field plays a dominant role in regularity theory of the Boussinesq equations.
Wydawca
Rocznik
Strony
art. no. 20220221
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Mathematics, Texas A & M University-Kingsville, Kingsville, USA
  • Department of Mathematical Science, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
autor
  • University of Mostaganem, Mostaganem, 27000, Algeria; Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
  • Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
  • Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
Bibliografia
  • [1] A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, in: Courant Lecture Notes in Mathematics, vol. 9, American Mathematical Society, Providence, Rhode Island, USA and Courant Institute of Mathematical Sciences, New York University, New York, 2003.
  • [2] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, United Kingdom, 2006.
  • [3] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, London, 1982.
  • [4] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
  • [5] P. L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, Oxford Science Publications/The Clarendon Press/Oxford University Press, New York, 1996, xiv+237 pp.
  • [6] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1984 edition, xiv+408 pp.
  • [7] H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations 233 (2007), 199–220.
  • [8] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math. 203 (2006), 497–513.
  • [9] R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data, Commun. Math. Phys. 290 (2009), 1–14.
  • [10] T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst. 12 (2005), 1–12.
  • [11] X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Analysis TMA, 72 (2010), 677–681.
  • [12] H. Abidi, T. Hmidi, and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dyn. Sys. 29 (2011), 737–756.
  • [13] D. Chae, S.-K. Kim, and H.-S. Nam, Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations, Nagoya Math. J. 155 (1999), 55–80.
  • [14] R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D 237 (2008), 1444–1460.
  • [15] J. Fan, G. Nakamura, and H. Wang, Blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain, Nonlinear Anal. 75 (2012), 3436–3442.
  • [16] J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity 22 (2009), 553–568.
  • [17] T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincaré-AN. 27 (2010), 1227–1246.
  • [18] C. Miao and L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl. 18 (2011), 707–735.
  • [19] N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Methods Appl. Sci. 9 (1999), 1323–1332.
  • [20] H. Qiu, Y. Du, and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Analysis TMA, 73 (2010), 806–815.
  • [21] Y. Jia, X. Zhang, and B- Q. Dong, Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion, Comm. Pure Appl. Anal. 12 (2013), 923–937.
  • [22] S. Gala, Z. Guo, and M. A. Maria, A remark on the regularity criterion of Boussinesq equations with zero heat conductivity, Appl. Math. Lett. 27 (2014), 70–73.
  • [23] A. Benedek and R. Panzone, The space L p with mixed norm, Duke Math. J. 28 (1961), 301–324.
  • [24] D. L. Fernandez, Lorentz spaces, with mixed norms, J. Funct. Anal. 25 (1977), 128–146.
  • [25] L. Huang and D. Yang, On function spaces with mixed norms – A Survey, preprint, 2019, DOI: https://doi.org/10.48550/arXiv.1908.03291.
  • [26] S. Gala and M. A. Ragusa, A new regularity criterion for the Navier-Stokes equations in terms of two components of the velocity, Electronic J. Qualitative Theory Differential Equations 26 (2016), 1–9.
  • [27] A. R. Adams, Sobolev Spaces, Academic Press, Boston, MA, 1979.
  • [28] A. R. Adams, Reduced Sobolev inequalities, Canad. Math. Bull. 31 (1988), 159–167.
  • [29] L. C. F. Ferreira, E. S. Medeiros, and M. Montenegro, A class of elliptic equations in anisotropic spaces, Ann. Mat. Pura Appl. 192 (2013), 539–552.
  • [30] D. Q. Khai and N. M. Tri, Solutions in mixed-norm Sobolev-Lorentz spaces to the initial value problem for the Navier-Stokes equations, J. Math. Anal. Appl. 417 (2014), 819–833.
  • [31] P. Constantin and C. Foias, Navier-Stokes Equations. Chicago Lectures in Mathematics Series, The University of Chicago Press, Chicago, 1988.
  • [32] Y. Li, Global regularity for the viscous Boussinesq equations, Math. Meth. Appl. Sci. 27 (2004), 363–369.
  • [33] Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Anal. 118 (2015), 1–21.
  • [34] Z. Guo, M. Caggio and Z. Skalàk, Regularity criteria for the Navier-Stokes equations based on one component of velocity, Nonlinear Anal. Real World Appl. 35 (2017), 379–396.
  • [35] L. C. Evans, Partial Differential Equations, American Mathematical Society, United States, 1998.
  • [36] D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. R. Soc. Edinburgh, Sect. A 127 (1997), 935–946.
  • [37] H. Beirãoda Veiga, A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 99–106.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0367164-399d-4003-8c5d-4f142aa61343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.