Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Smart water meters (Internet of Things based) are technologically advanced tools delivering precise data on water consumption in a household. However, it has not been examined yet what influences consumer intention to adopt smart water meters. The study objective is to investigate predictors of consumer intention to install smart water meters. The Technology Acceptance Model was applied as the main theoretical framework. Design/methodology/approach: Data were collected from 366 respondents through an online survey conducted in 2021. Structural equation modeling was used for hypotheses verification. Findings: The intention to adopt smart water meters was mainly predicted by attitude towards the use of smart water meters. which, in turn, was predicted both by perceived ease of use and by perceived usefulness of these devices. The direct positive impact of perceived ease of use on the intention to adopt smart water meters was also found, whereas the direct relation between perceived usefulness of smart water meters and the intention for the adoption turned out to be statistically insignificant. Research limitations/implications: One research limitation is the probable lack of smart water meter usage among the responders, which may have affected their perception on how these devices are useful and easy to use. Additionally, only the main variables of TAM were applied, thus, other variables were not considered that may have had impact on perceived usefulness and perceived ease of use or usage behavior. Social implications: Considering practical implications, by analyzing what may influence consumers to adopt smart water meters, we are able to apply this knowledge in real life and increase the amount of smart water meters in households, which may lead to household water reduction. Originality/value: In previous research. what influences consumers to apply smart water meters has not been examined. This research indicates variables (adopted by TAM) influencing consumers to apply smart water meters, potentially leading to reduction in household water consumption.
Rocznik
Tom
Strony
469--484
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
- Poznan University of Economics and Business
autor
- Poznan University of Economics and Business
autor
- Poznan University of Economics and Business
Bibliografia
- 1. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
- 2. Andaregie, A., Astatkie, T. (2021). Determinants of technology adoption by micro and small enterprises (MSEs) in Awi zone, Northwest Ethiopia. African Journal of Science, Technology, Innovation and Development, 1-10. doi:10.1080/20421338.2021.1923385
- 3. Bruque, S., Moyano, J. (2007). Organisational determinants of information technology adoption and implementation in SMEs: The case of family and cooperative firms. Technovation, 27(5), 241-253. doi:10.1016/j.technovation.2006.12.003
- 4. Chan, F.T.S., Yee-Loong Chong, A. (2013). Analysis of the determinants of consumers' mcommerce usage activities. Online Information Review, 37(3), 443-461. doi:10.1108/oir-01-2012-0012.
- 5. Chang, S., Nam, K. (2021). Smart Home Adoption: The Impact of User Characteristics and Differences in Perception of Benefits. Buildings, 11(9). doi:10.3390/buildings11090393.
- 6. Chen, C.-F., Xu, X., Arpan, L. (2017). Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Research & Social Science, 25, 93-104. doi:https://doi.org/ 10.1016/j.erss.2016.12.011.
- 7. Cominola, A., Giuliani, M., Castelletti, A., Fraternali, P., Gonzalez, S.L.H., Herrero, J.C.G., Rizzoli, A.E. (2021). Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. npj Clean Water, 4(1). doi:10.1038/s41545-021-00119-0.
- 8. Daminato, C., Diaz-Farina, E., Filippini, M., Padrón-Fumero, N. (2021). The impact of smart meters on residential water consumption: Evidence from a natural experiment in the Canary Islands. Resource and Energy Economics, 64, 101221. doi:https://doi.org/10.1016/ j.reseneeco.2021.101221.
- 9. Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008.
- 10. Davis, F.D., Bagozzi, R.P. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982.
- 11. Dingfelder, H.E., Mandell, D.S. (2011). Bridging the research-to-practice gap in autism intervention: an application of diffusion of innovation theory. Journal of autism and developmental disorders, 41(5), 597-609. doi:10.1007/s10803-010-1081-0.
- 12. Elnagar, A., Alnazzawi, N., Afyouni, I., Shahin, I., Bou Nassif, A., Salloum, S.A. (2022). Prediction of the intention to use a smartwatch: A comparative approach using machine learning and partial least squares structural equation modeling. Informatics in Medicine Unlocked, 29. doi:10.1016/j.imu.2022.100913.
- 13. Erickson, T., Podlaseck, M., Sahu, S., Dai, J., Chao, T.-J., Naphade, M.R. (2012). The dubuque water portal: evaluation of the uptake, use and impact of residential water consumption feedback. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
- 14. Evans, R.G., Sadler, E.J. (2008). Methods and technologies to improve efficiency of water use. Water Resources Research, 44(7). doi:https://doi.org/10.1029/2007WR006200.
- 15. Fishbein, M., Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley.
- 16. Gao, L., Bai, X. (2014). A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific Journal of Marketing and Logistics, 26(2), 211-231. doi:10.1108/apjml-06-2013-0061.
- 17. Hsia, S.C., Wang, S.H., Hsu, S.W. (2021). Smart Water-Meter Wireless Transmission System for Smart Cities. IEEE Consumer Electronics Magazine, 10(6), 83-88. doi:10.1109/Mce.2020.3043997.
- 18. Hubert, M., Blut, M., Brock, C., Zhang, R.W., Koch, V., Riedl, R. (2019). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073-1098. doi:10.1108/ejm-12-2016-0794.
- 19. King, W.R., He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755. doi:10.1016/j.im.2006.05.003.
- 20. Koul, S., Eydgahi, A. (2018). Utilizing Technology Acceptance Model (TAM) for driverless car technology Adoption. Journal of technology management & innovation, 13, 37-46.
- 21. Kranz, J., Gallenkamp, J.V., Picot, A. (2010). Power Control to the People? Private Consumers' Acceptance of Smart Meters. Paper presented at the ECIS 2010 Proceedings. 96.
- 22. Krishnamurti, T., Schwartz, D., Davis, A., Fischhoff, B., de Bruin, W.B., Lave, L., Wang, J. (2012). Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy, 41, 790-797. doi:10.1016/j.enpol.2011.11.047
- 23. Kuo, Y.-F., Yen, S.-N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110. doi:10.1016/j.chb.2008.07.007.
- 24. Lai, P.C. (2017). The Literature Review of Technology Adoption Models and Theories for the Novelty Technology. Journal of Information Systems and Technology Management, 14(1). doi:10.4301/s1807-17752017000100002.
- 25. Larrabee Sonderlund, A., Smith, J., Hutton, C., Kapelan, Z. (2014). Using Smart Meters for Household Water Consumption Feedback: Knowns and Unknowns. Procedia Engineering, 89, 990-997. doi:10.1016/j.proeng.2014.11.216.
- 26. Lee, Y.-K., Park, J.-H., Chung, N., Blakeney, A. (2012). A unified perspective on the factors influencing usage intention toward mobile financial services. Journal of Business Research, 65(11), 1590-1599. doi:https://doi.org/10.1016/j.jbusres.2011.02.044.
- 27. Liao, C.H., Tsou, C.W., Huang, M.F. (2007). Factors influencing the usage of 3G mobile services in Taiwan. Online Information Review, 31(6), 759-774. doi:10.1108/14684520710841757.
- 28. Marangunić, N., Granić, A. (2014). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. doi:10.1007/s10209-014-0348-1.
- 29. Meyer, B.E., Nguyen, K., Beal, C.D., Jacobs, H.E., Buchberger, S.G. (2021). Classifying Household Water Use Events into Indoor and Outdoor Use: Improving the Benefits of Basic Smart Meter Data Sets. Journal of Water Resources Planning and Management, 147(12). doi:Artn 0402107910.1061/(Asce)Wr.1943-5452.0001471.
- 30. Montginoul, M., Vestier, A. (2018). Smart metering: A water-saving solution? Consider communication strategies and user perceptions first. Evidence from a French case study. Environmental Modelling & Software, 104, 188-198. doi:https://doi.org/10.1016/j.envsoft.2018.02.006.
- 31. Moody, G.D., Siponen, M. (2013). Using the theory of interpersonal behavior to explain non-work-related personal use of the Internet at work. Information & Management, 50(6), 322-335. doi:10.1016/j.im.2013.04.005.
- 32. Moon, J.-W., Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. doi:https://doi.org/10.1016/S0378-7206(00) 00061-6.
- 33. Mudumbe, M., Abu-Mahfouz, A. (2015). Smart water meter system for user-centric consumption measurement.
- 34. Nguyen, N.M.H., Borusiak, B. (2021). Using UTAUT2 Model to Examine the Determinants of Omnichannel Technology Acceptance by Consumers. LogForum, 17(2), 231-241. doi:10.17270/J.LOG.2021.580.
- 35. Obery, A., Bangert, A. (2017). Exploring the Influence of Nature Relatedness and Perceived Science Knowledge on Proenvironmental Behavior. Education Sciences, 7(1). doi:10.3390/educsci7010017.
- 36. Paetz, A.-G., Dütschke, E., Fichtner, W. (2011). Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions. Journal of Consumer Policy, 35(1), 23-41. doi:10.1007/s10603-011-9177-2.
- 37. Park, C.-K., Kim, H.-J., Kim, Y.-S. (2014). A study of factors enhancing smart grid consumer engagement. Energy Policy, 72, 211-218. doi:10.1016/j.enpol.2014.03.017.
- 38. Petersen, J., Shunturov, V., Janda, K., Platt, G., Weinberger, K. (2007). Dormitory Residents Reduce Electricity Consumption When Exposed to Real-Time Visual Feedback and Incentives. International Journal of Sustainability in Higher Education, 8. doi:10.1108/14676370710717562.
- 39. Pimenta, N., Chaves, P. (2021). Study and design of a retrofitted smart water meter solution with energy harvesting integration. Discover Internet of Things, 1(1), 10. doi:10.1007/ s43926-021-00010-x.
- 40. Robles-Gómez, A., Tobarra, L., Pastor-Vargas, R., Hernández, R., Haut, J.M. (2021). Analyzing the Users’ Acceptance of an IoT Cloud Platform Using the UTAUT/TAM Model. IEEE Access, 9, 150004-150020. doi:10.1109/ACCESS.2021.3125497.
- 41. Scherer, R., Siddiq, F., Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35. doi:10.1016/ j.compedu.2018.09.009.
- 42. Schunk, D.H. (2012). Social cognitive theory. American Psychological Association. doi:10.1037/13273-005.
- 43. S0nderlund, A.L., Smith, J.R., Hutton, C., Kapelan, Z. (2014). Using Smart Meters for Household Water Consumption Feedback: Knowns and Unknowns. Procedia Engineering, 89, 990-997. doi:https://doi.org/10.1016/j.proeng.2014.11.216.
- 44. Svendsen, G.B., Johnsen, J.-A.K., Almás-Sorensen, L., Vitters0, J. (2013). Personality and technology acceptance: the influence of personality factors on the core constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32(4), 323-334. doi:10.1080/0144929x.2011.553740.
- 45. Taherdoost, H. (2018). A review of technology acceptance and adoption models andtheories. Procedia Manufacturing, 22, 960-967. doi:https://doi.org/10.1016/j.promfg. 2018.03.137.
- 46. Taylor, S., Todd, P.A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144-176. Retrieved from: http://www.jstor.org/stable/23011007.
- 47. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. doi:10.2307/30036540.
- 48. Wang, L.Y., Lew, S.L., Lau, S.H., Leow, M.C. (2019). Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon, 5(6), e01788. doi:10.1016/j.heliyon.2019.e01788.
- 49. WWAP (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. Paris: Unesco.
- 50. Yousafzai, S.Y., Foxall, G.R., Pallister, J.G. (2007a). Technology acceptance: a metaanalysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251-280. doi:10.1108/17465660710834453.
- 51. Yousafzai, S.Y., Foxall, G.R., Pallister, J.G. (2007b). Technology acceptance: a metaanalysis of the TAM: Part 2. Journal of Modelling in Management, 2(3), 281-304. doi:10.1108/17465660710834462.
- 52. Zhang, N., Guo, X.-H., Chen, G.-Q. (2007). Extended Information Technology Initial Acceptance Model and Its Empirical Test. Systems Engineering - Theory & Practice, 27(9), 123-130. doi:https://doi.org/10.1016/S1874-8651(08)60057-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a03566b0-46b8-4766-9086-388743242778