PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-pollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor(Lower Saxony, Germany)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to reconstruct regional vegetation changes and local conditions during the fen-bog transition in the Borsteler Moor (northwestern Germany), a sediment core covering the period between 7.1 and 4.5 cal kyrs BP was palynologically investigated. The pollen diagram demonstrates the dominance of oak forests and a gradual replacement of trees by raised bog vegetation with the wetter conditions in the Late Atlantic. At ~ 6 cal kyrs BP, the non-pollen palynomorphs (NPP) demonstrate the succession from mesotrophic conditions, clearly indicated by a number of fungal spore types, to oligotrophic conditions, indicated by Sphagnum spores, Bryophytomyces sphagni, and testate amoebae Amphitrema, Assulina and Arcella, etc. Four relatively dry phases during the transition from fen to bog are clearly indicated by the dominance of Calluna and associated fungi as well as by the increase of microcharcoal. Several new NPP types are described and known NPP types are identified. All NPP are discussed in the context of their palaeoecological indicator values.
Słowa kluczowe
Czasopismo
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 54 poz., tab., rys.
Twórcy
  • Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IMBE UMR CNRS 7263, Europôle Mediterraneen de l'Arbois, 13545 Aix-en-Provence, France
  • Laboratory of Biogeochemical and Remote Methods of Environmental Monitoring, National Research Tomsk State University, Russia
  • Department of Palynology and Climate Dynamics, Georg-August-University of Göttingen, Göttingen, Germany
autor
  • Lower Saxony Institute for Historical Coastal Research, Wilhelmshaven, Germany
  • Department of Palynology and Climate Dynamics, Georg-August-University of Göttingen, Göttingen, Germany
  • Lower Saxony State Service for Cultural Heritage, Hanover, Germany
  • Department of Palynology and Climate Dynamics, Georg-August-University of Göttingen, Göttingen, Germany
Bibliografia
  • 1. Bakker M., van Smeerdijk D.G. 1982. A palaeoecological study of a late Holocene section from “Het Ilperveld”, western Netherlands. Review of Palaeobotany and Palynology 36, 95–163.
  • 2. Bauch R. 1938. Über die systematische Stellung von Tilletia Sphagni Nawashin. Berichte der Deutschen Botanischen Gesellschaft 56, 73–85.
  • 3. Behre K.-E. 2004. Coastal development, sea-level change and settlement history during the later Holocene in the Clay District of Lower Saxony (Niedersachsen), northern Germany. Quaternary International 112, 37–53.
  • 4. Behre K.-E. 2008. Landschaftsgeschichte Norddeutschlands – Umwelt und Siedlung von der Steinzeit bis zur Gegenwart. Wachholtz Verlag, Neumünster.
  • 5. Beug H.-J. 2004. Leitfaden der Pollenbestimmung. Verlag Dr.Friedrich Pfeil, München.
  • 6. Bielańska-Grajner I., Cudak A., Mieczan T. 2011. Epiphytic rotifer abundance and diversity in moss patches in bogs and fens in the Polesie National Park (Eastern Poland). International Review of Hydrobiology 96, 29–38.
  • 7. Blaauw M. 2010. Methods and code for ‘classical’ age-modeling of radiocarbon sequences, Quaternary Geochronology 5, 512-518.
  • 8. Blaauw M., Mauquoy D. 2012. Signal and variability within a Holocene peat bog – Chronological uncertainties of pollen, macrofossil and fungal proxies. Review of Palaeobotany and Palynology 186, 5–15.
  • 9. Borradaile L.A., Eastham L.E.S., Potts F.A., Saunders J.T. 1963. The Invertebrata. Cambridge University Press, Cambridge.
  • 10. Bradley W. H. 1967. Two aquatic fungi (Chytridiales) from the Green River Formation of Wyoming. American Journal of Botany 54, 577–582.
  • 11. Chau R. 1979. Conidial ultrastructure and taxonomic affinity of a fungal parasite of Sphagnum. The Michigan Botanist 18,15–18.
  • 12. Braune W., Leman A., Taubert H. 1999. Pflanzenanatomisches Praktikum II. Zur Einführung in den Bau, die Fortpflanzung und Ontogenie der niederen Pflanzen (auch der Bakterien und Pilze). Spektrum Verlag, Heidelberg, Berlin (in German).
  • 13. Davey M.L., Currah R.S. 2006. Interactions between mosses (Bryophyta) and fungi. Canadian Journal of Botany 84, 1509–1519.
  • 14. Eckstein J., Leuschner H.H., Bauerochse A. 2011. Mid-Holocene pine woodland phases and mire development – significance of dendrochronological data from subfossil trees from nortwest Germany. Journal of Vegetation Science 22, 781–794.
  • 15. Eckblad F.-E. 1975. Tilletia sphagni, Helotium schimperi, or what? Pollen et Spores 17, 423–428.
  • 16. Ellis M.B., Ellis J.P. 1985. Microfungi on land plants. The Richmond Publishing, Slough.
  • 17. Frey D.G. 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergebnisse der Limnologie 2, 1–114.M
  • 18. Goh T.K., Hyde K.D., Tsui K.M. 1998. The hyphomycetes genus Acrogenospora, with two new species and two new combinations. Mycological Research 102, 1309–1315.
  • 19. Goh T.-K., Hyde K.D., Ho W.H, Yanna 1999. A revision of the genus Dictyosporium, with descriptions of three new species. Fungal diversity 2, 65–100.
  • 20. Grosse-Brauckmann G. 1997. Moore und Moornaturschutzgebiete in Deutschland – eine Bestandsaufnahme. Telma 27, 183–215.
  • 21. Hesmer H. 1929. Mikrofossilien in Torfen. Paläontologische Zeitschrift 11, 245–257.
  • 22. Juggins S. 2007. C2. Software for ecological and palaeoecological data analysis and visualisation. User guide Version 1.5. University of Newcastle, Newcastle upon Tyne.
  • 23. Kalgutkar R.M., Jansonius J. 2000. Synopsis of fossil fungal spores, mycelia and fructifications. AASP, Dallas.
  • 24. Krug J.C., Benny G.L., Keller H.W. 2004. Coprophilous fungi. In Mueller G.M., Bills G.F., Foster M.S. (eds.), Biodiversity of Fungi: Inventory and Monitoring Methods, 467–499. Elsevier, Amsterdam.
  • 25. Kuhry P. 1985. Transgression of a raised bog across a coversand ridge originally covered with an oak-lime forest. Palaeoecological study of a Middle Holocene local vegetation succession in the Amtsven (northwest Germany). Review of Palaeobotany and Palynology 44, 303–353.
  • 26. Kuhry P. 1997. The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physic-chemical properties. Review of Palaeobotany and Palynology 96, 183–224.
  • 27. Kürschner H., Shumilovskikh L., Djamali M., de Beaulieu J.-L. 2014. A late Holocene subfossil record of Sphagnum squarrosum Crome (Sphagnopsida, Bryophyta) from NW Iran. Nowa Hedwigia, 100, 373–381.
  • 28. Lundqvist N. 1972. Nordic Sordariaceae sensu lato. Symbolae Botanicae Upsalienses 20, 1–314.
  • 29. Markovskaja S., Treigien A. 2007. A new and a rare species of Cryptadelphia and their Brachysporium anamorphs. Nova Hedwigia 84, 495–501.
  • 30. Middeldorp, A.A. 1986. Functional palaeoecology of the Hahnenmoor raised bog ecosystem – a study of vegetation history, production and decomposition by means of pollen density dating. Review of Palaeobotany and Palynology 49, 1–73.
  • 31. Miola A. 2012. Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology 186, 142–161.
  • 32. Mirza J.H., Cain R.F. 1969. Revision of the genus Podospora. Canadian Journal of Botany 47, 1999–2048.
  • 33. Montoya E., Rull V., van Geel B. 2010. Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 169–183.
  • 34. Müller E. 1962. Über die Ascomycetengattung Stuartella Fabre. Berichte der Schweizerischen Botanischen Gesellschaft = Bulletin de la Société Botanique Suisse / Band 72, 118–122.
  • 35. Munk A. 1957. Danish Pyrenomycetes. Dansk Botamisk Arkiv 17, 1–491.
  • 36. Punt W., Hoen P.P., Blackmore S., Nilsson S., le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81.
  • 37. Réblová M., Seifert K.A. 2004. Cryptadelphia (Trichosphaeriales), a new genus for holomorphs with Brachysporium anamorphs and clarification of the taxonomic status of Wallrothiella. Mycologia 96, 343–367.
  • 38. Richardson M.J. 2001. Diversity and occurrence of coprophilous fungi. Mycological Research 105, 387–402.
  • 39. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., van der Plicht J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 1869–1887.
  • 40. Rudolph K. 1917. Untersuchungen über den Aufbau Böhmischer Moore. I. Aufbau und Entwicklungsgeschichte Südböhmischer Moore. Abhandlungen der K.K. zoologisch-botanischer Gesellschaft im Wien 9, 1–116.
  • 41. Seifert K., Morgan-Jones G., Gams W., Kendrick B. 2011. The genera of Hyphomycetes. CBS Biodiversity Series 9. CBSKNAW Fungal Biodiversity Centre, Utrecht.
  • 42. Sherwood-Pike M.A. 1988. Freshwater fungi: fossil record and paleoecological potential. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 271–285.
  • 43. Shumilovskikh L.S., Schlütz F., Achterberg I., Kvitkina A., Bauerochse A., Leuschner H.H. Pollen as nutrient source in Holocene ombrotrophic bogs. Review of Palaeobotany and Palynology, in revison.
  • 44. Stchigel A.M., Calduch M., Guarro J., Zaror L. 2002. A new species of Podospora from soil in Chile. Mycologia 94, 554–558.
  • 45. Sutton B.C. 1985. Notes on some deuteromycete genera with cheiroid or digitate brown conidia. Proceeding of Indian Academy of Science (Plant Science) 94, 229–244.
  • 46. Van Beverwijk A.L. 1954. Three new fungi: Helicoon pluriseptatum n.sp., Papulaspora pulmonaria n. sp. and Tricellula inaequalis n.gen. n.sp. Antonie van Leeuwenhoek 20, 1–16.
  • 47. Van Geel B. 1978. A palaeoecological study of Holocene peat bogsections in Germany and the Netherlands, based on the analysis of pollen, spores and macroand microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1–120.
  • 48. Van Geel B., Bohncke S.J.P., Dee H. 1981. A palaeoecological study of an upper late glacial and Holocene sequence from “de Borchert”, the Netherlands. Review of Palaeobotany and Palynology 31, 367–448.
  • 49. Van Geel B., Aptroot A. 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313–329.
  • 50. Van Geel B., Aptroot A., Mauquoy D. 2006. Sub-fossil evidence for fungal hyperparasitism (Isthmospora spinosa on Meliola ellisii, on Calluna vulgaris) in a Holocene intermediate ombrotrophic bog in northern-England. Review of Palaeobotany and Palynology 141, 121–126.
  • 51. Van Geel B., Gelorini V., Lyaruu A., Aptroot A., Rucina S., Marchant R., Damsté J.S.S., Verschuren D. (2011). Diversity and ecology of tropical African fungal spores from a 25,000year palaeoenvironmental record in southeastern Kenya. Review of Palaeobotany and Palynology 164, 174–190.
  • 52. Warner B.G., Chengalath R. 1988. Holocene fossil Habrotrocha angusticollis (Bdelloidea: Rotifera) in North America. Journal of Palaeolimnology 1, 141–147.
  • 53. Watanabe T. 2010. Pictorial Atlas of Soil and Seed Fungi. CRC Press, Boca Raton.
  • 54. Willemsen J., van’t Veer R., van Geel B. 1996. Environmental change during the medieval reclamation of the raised-bog area Waterland (The Netherlands): a palaeophytosociological approach. Review of Palaeobotany and Palynology 94, 75–100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0331529-568f-4415-91f1-f9a2ff706912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.