PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of ZnO-CuO flower-like hetero-nanostructures as volatile organic compounds (VOCs) sensor at room temperature

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ZnO-CuO flower-like hetero-nanostructures were successfully prepared by combining hydrothermal and dip coating methods. Flower-like hetero-nanostructures of ZnO-CuO were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and UV-Vis. The sensing properties of ZnO-CuO flower-like hetero-nanostructures to volatile organic compounds (VOCs) were evaluated in a chamber containing acetone or isopropanol gas at room temperature. The sensitivity of ZnO-CuO flower-like hetero-nanostructures to VOCs was enhanced compared to that of pure leafage-like ZnO nanostructures. Response and recovery times were about 5 s and 6 s to 50 ppm acetone, and 10 s and 8 s to 50 ppm isopropanol, respectively. The sensing performance of ZnO-CuO flower-like hetero-nanostructures was attributed to the addition of CuO that led to formation of p-n junctions at the interface between the CuO and ZnO. In addition, the sensing mechanism was briefly discussed.
Wydawca
Rocznik
Strony
452--459
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Physics, College of Science, Al-Mustansiriyah University, Iraq
  • Department of Physics, College of Science, Al-Mustansiriyah University, Iraq
Bibliografia
  • [1] DINH T., CHOI I., SON Y., SONG K., SUNWOO Y., KIM J., J. Environ. Manage., 168 (2016), 157.
  • [2] HUZAR E., WONDNICKA A., DZIĘCIOŁ M., Ecol. Chem. Eng. A, 18 (2011), 991.
  • [3] GAVGANI J., DEHSARI H., HASANI A., MAHYARI M., SHALAMZARI E., SALEHI A., TAROMI F., RSC Adv., 5 (2015), 57559.
  • [4] HOSSEINI Z., IRAJIZAD A., MORTEZAALI A., Sensor. Actuat. B-Chem., 207 (2015), 865.
  • [5] KANAN S., EL-KADRI O., ABU-YOUSEF I., KANAN M., Sensors, 9 (2009), 8158.
  • [6] LEONARDI S., Chemosensors, 5 (2017), 1.
  • [7] HUANG X., CHOI Y., Sensor. Actuat. B-Chem., 122 (2007), 659.
  • [8] PANDYA H., CHANDRA S., VYAS A., Sensor Devices, (2011), 69.
  • [9] ALLAF R., HOPE-WEEKS L., J. Nanomater., 2014 (2014), 1.
  • [10] RAMIREZ A., RAMIREZ I., ILIANA (Eds.), Photocatalytic semiconductors: synthesis, characterization, and environmental applications, Springer, New York, 2015.
  • [11] TRAN T., NGUYEN V., Int. Sch. Res. Notices, (2014), 1.
  • [12] DEREK R., SHEIKH A., PATRICIA A., Sensor. Actuat. B-Chem, 204 (2014), 250.
  • [13] CHOWA L., LUPANA O., CHAI G., KHALLAF H., ONO L., ROLDAN C., TIGINYANU I., URSAKI V., SONTE V., SCHULTE A., Sensor. Actuat. A-Phys, 189 (2013), 399.
  • [14] ABBAS K., BIDIN N., SABRY R., AL-ASEDY H., ALAZAWI M., ISLAM S., Mater. Chem. Phys., 182 (2016), 298.
  • [15] CHOI J., PARK D.W., SHIM S.E., Synthetic Met., 162 (2012), 1513.
  • [16] MAZIARZ W., KUSIOR A., ZAIAC A.T., Beilstein J. Nanotech., 7 (2016), 1718.
  • [17] SHANKAR P., BALAGURU RAYAYAPPAN J.B., Science Jet, 4(2015), 1.
  • [18] AL-HARDAN N., ABDULLAH M., ABDUL AZIZ A., AHMAD H., LOW L., Vacuum, 85 (2010), 101.
  • [19] CHEN Y., SHEN Z., JIA Q., ZHAO J., ZHAO Z., JI H., Roy. Soc. Chem., 6 (2016), 2504.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a031fff0-6fe4-4a25-92ac-c0f24b893da5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.