PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polylactide-based composite materials for 3D printing and medical applications - the effect of basalt and silicon dioxide addition

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymers are compounds that play a key role in the development of many fields of science, including emergency medicine. Currently, there are increasing requirements for biomedical polymers in terms of producing lighter and more ecological equipment. To meet these requirements, a composite material was developed: polylactide (PLA) with the addition of modifiers - basalt and silicon dioxide (SiO2). PLA was chosen as a biodegradable polymer that naturally decomposes in the environment. This is very important, regarding a large number of single-use materials made of microplastics polluting the environment. The samples were made by additive 3D printing and then immersed in swimming pool water, chlorine solution, and distilled water. FTIR analysis showed the influence of the environment on the intensity and shift of PLA absorption bands. Microscopic analysis provided information on surface morphology, roughness, and potential defects. Tribological and micromechanical tests showed that the additions of basalt and silica to the PLA material influenced the morphological structure and the average area of the wear trace, volumetric wear, and average coefficient of friction. In the presence of chlorine solution, distilled water, and pool water under real conditions, the SiO2 addition made the PLA material more resistant to abrasion, as compared to the basalt addition. However, additives did not significantly affect the PLA material hardness, and the samples with basalt turned out to be more resistant to deformation.
Słowa kluczowe
Rocznik
Strony
29--39
Opis fizyczny
Bibliogr. 21 poz., rys., wykr., tab.
Twórcy
autor
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland
Bibliografia
  • [1] W. Kanabenja, K. Passarapark: 3D printing filaments from plasticized Polyhydroxybutyrate/Polylactic acid blends reinforced with hydroxyapatite. Additive Manufacturing (2022). https://doi.org/10.1016/j.addma.2022.103130
  • [2] V. Nagarajan, A.K. Mohanty, M. Misra: Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chemistry & Engineering 4(6) (2016) 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321
  • [3] B. Bax, J. Müssig: Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology 68 (2008) 1601-1607. https://doi.org/10.1016/j.compscitech.2008.01.004
  • [4] S. Łabużek, B. Nowak, J. Pająk, G. Rymarz: Activity of extracellular depolymerase secreted by Gliocladium solani strain during “Bionolle®” polyester degradation. Polimery 53 (2008) 465-470.
  • [5] P. Ruśkowski, A. Gadomska-Gajadhur: Polilaktyd w zastosowaniach medycznych: Tworzywa Sztuczne w Przemyśle 2 (2017) 32-35.
  • [6] V. Dhand, G. Mittal, K. Yop Rhee et al.: A short review on basalt fiber reinforced polymer composites, Composites Part B Engineering 73 (2015) 166-180.
  • [7] Yi Zhang, Junrong Yu, Chengjun Zhou et al.: Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers. Polymer Composites 31(4) (2010) 684-690. https://doi.org/10.1002/pc.20847
  • [8] A. Ostrowski: Łódź wielofunkcyjna. Zgłoszony: 09.12.2013. Ochronny wzór użytkowy PL 67456.
  • [9] H. Czichos, S. Becker, J. Lexow: Multilaboratory tribotesting: results from the VAMAS program on wear test methods. Wear 114 (1987) 109-130.
  • [10] ASTM Standard G133-05, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM International, West Conshohocken, PA (2016).
  • [11] W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. of Mater. Res. 7 (1992) 1564-1583. https://doi.org/10.1557/JMR.1992.1564;
  • [12] ISO 14577-4, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 4: Test method for metallic and non-metallic coatings (2016).
  • [13] G. Mele, E. Bloise, F. Cosentino et al.: Influence of Cardanol Oil on the Properties of Poly(lactic acid) Films Produced by Melt Extrusion. ACS Omega 4(1) (2019) 718-726. DOI: 10.1021/acsomega.8b02880
  • [14] https://www.sciencedirect.com/science/article/abs/pii/ S0142941811001899?via%3Dihub
  • [15] B. Wei, S. Song, H. Cao: Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Materials & Design 32(8-9) (2011) 4180-4186. doi: https://doi.org/10.1016/j.matdes.2011.04.041
  • [16] G.H. Yew, A.M. Mohd Yusof, Z.A. Mohd Ishak et al.: Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polymer Degradation and Stability 90(3) (2005) 488-500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006
  • [17] G.L. Siparsky, K.J. Voorhees, J.R. Dorgan et al.: Water transport in polylactic acid (PLA), PLA/ polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Environ Polym Degr 5 (1997) 125-136. https://doi.org/10.1007/BF02763656G
  • [18] F. Iñiguez-Franco, R. Auras, G. Burgess et al.: Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 99 (2016) 315-323. https://doi.org/10.1016/j.polymer.2016.07.018
  • [19] J.C. Fleischer, J.C. Diehl, L.S.G.L. Wauben et al.: The Effect of Chemical Cleaning on Mechanical Properties of Three-Dimensional Printed Polylactic Acid. J. Med. Device 14(1) (2020) 011109. doi: 10.1115/1.4046120
  • [20] S.R. Subramaniam, M. Samykano, S.K. Selvamani, et al.: Preliminary investigations of polylactic acid (PLA) properties. AIP Conference 2059(1) (2019) 020038. https://doi.org/10.1063/1.5085981
  • [21] M.M. Hanon, M. Kovács, L. Zsidai: Tribology behaviour investigation of 3D printed polymers, International Review of Applied Sciences and Engineering 10(2) (2019) 173-181. https://doi.org/10.1556/1848.2019.0021
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a031558d-799a-4595-a6f7-699c971a5e55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.