PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoforming of a Polystyrene Sheet with a Vibrating Male Mold

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to present the results of research on the thermoforming process using a patented, original male mold vibrating with the adequate frequency during the stretching of a polystyrene sheet. The research included determining the influence pertaining to the frequency of the mold vibration as well as other selected conditions of the thermoforming process, such as the temperature of the heater and heating time on the irregularity of the wall thickness of the formed product. The research was conducted using the DOE methods – central composite design. The thermoforming process was conducted using the vacuum stretching method with initial forming by high-pressure air. The analysis of the results obtained showed that the frequency of mold vibration has a significant statistic influence on the thickness of the walls of a finished product, both in the area of their bottom as well as the bottom’s edge. The thickness of the product wall on these areas is also significantly influenced by the other above-mentioned factors. No interaction, however, was detected between those and the frequency of the mold vibration. Using the vibrating mold in the presented process proved favourable, since the walls of the obtained finished products showed lesser irregularity in terms of the wall thickness than the products manufactured using a fixed mold.
Twórcy
  • Department of Polymer Processing and Technology, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronic, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Engelmann S. Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation, John Wiley & Sons, UK. Chichester, 2012. DOI: 10.1002/9781118207086.ch31
  • 2. Haihong Xu H. and Kazmer D.O. Thermoforming shrinkage prediction. Polymer Engineering & Science 9(41), 2001, 1553–1563. DOI: 10.1002/ pen.10854
  • 3. Hosseini H. and Vasilivich Berdyshev B. A Solution for the Rupture of Polymeric Sheets in Plug-Assist Thermoforming. Journal of Polymer Research 4(13), 2006, 329–334. DOI: 10.1007/ s10965–006–9042–1
  • 4. Hosseini H., Berdyshev B.V. and Mehrabani-Zeinabad A. Dynamic characteristics of plug-assist thermoforming process. Polymer Engineering & Science 2(49), 2009, 240–243. DOI: 10.1002/pen.21245
  • 5. http://www.pex.biz.pl
  • 6. Klein P.W. Fundamentals of plastic thermoforming, Synthesis lectures on materials engineeering, Morgan & Claypool Publishers, 2009.
  • 7. Min S.C., Zhang H.Q. and YANG H. Thermoformed container wall thickness effects on orange juice quality. Journal of Food Processing and Preservation 6(35), 2011, 758–766. DOI: 10.1111/j.174 5–4549.2011.00526.x.
  • 8. Montgomery D.C. Design and Analysis of Experiments 7 th. ed., Wiley&Sons, 2009.
  • 9. Nam G.J., Lee J.W. and Ahn K.H. Three-dimensional simulation of thermoforming process and its comparison with experiments. Polymer Engineering & Science, 10(40), 2000, 2232–2240. DOI: 10.1002/pen.11355
  • 10. Raurí McCool R. and Martin P. J. The role of process parameters in determining wall thickness distribution in plug-assisted thermoforming. Polymer Engineering & Science 10(50), 2010, 1923–1934. DOI: 10.1002/pen.21718
  • 11. Sasimowski E. The Effect of Selected Conditions in a Thermoforming Process on Wall Thickness Variations, Adv. Sci. Technol. Res. J., 11(4), 2017, 41–48. DOI: https://doi.org/10.12913/22998624/73818
  • 12. Sasimowski E. and Filipek P. Device and method for heat forming of products from polymer plastics, Patent PL 230093 (B1) 2018.
  • 13. Schwarzmann P. Thermoforming – A Practical Guide, Carl Hanser Verlag, Munich 2001.
  • 14. Sykutera D. and Pepliński K. Zastosowanie programu Ansys-Polyflow do wspomagania wytwarzania opakowań formowanych próżniowo. Inż. Ap. Chem, 3(50), 2011, 73–74.
  • 15. Throne J. L. Technology of Thermoforming, Hanser Publishers, Munich, 1996.
  • 16. Throne J. L. Understanding thermoforming, Hanser Publishers, Munich, 2008
  • 17. Van Mieghem B., Desplentere F., Van Bael A. and Ivens J.: Improvements in thermoforming simulation by use of 3D digital image correlation. eXPRESS Polymer Letters 2(9), 2015, 119–128. DOI: 10.3144/expresspolymlett.2015.13.
  • 18. Żenkiewicz M. and Szach A. Recent developments in the thermoforming of polimeric materials. Polimery 5(55), 2010, 337–350. DOI:dx.doi. org/10.14314/polimery.2010.337
  • 19. Żenkiewicz M. and Richert J. Thermoforming of polylactide nanocomposite films for packaging containers. Polimery 4(54), 2009, 299–302.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a02fe328-f876-48b2-8c62-4c10a2cd61ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.