PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Most Efficient Seaweed Species as a Bioremediator of Intensive Pond Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seaweed species have a positive effect on the bioremediation of nutrient waste. However, waste absorption efficiency varies between species. This research aims to analyze the most efficient seaweed as bioremediation of intensive waste ponds. The method used in this research was three types of seaweed stocked based on treatment groups in each of three tanks measuring 100×100×100 cm made of bamboo, wood, and specially designed tarpaulin. This study was carried out on a laboratory scale for 42 days on three local seaweed species to evaluate the waste disposal efficiency of each seaweed species. This research was conducted at the Bone Marine and Fisheries Polytechnic Laboratory, Tulang Daerah, South Sulawesi Province, Indonesia, from September to October 2022. Measurement of ammonia (NH3-N), nitrite (NO2-N), nitrate (NO3-N), and phosphate (PO4-P) carried out at the Center for Brackish Water Aquaculture and Fisheries Extension in Maros, the concentrations of the four nutrient wastes were significantly different (P<0.05), indicating differences in nutrient removal for each seaweed species. The removal efficiency of NH3-N, NO2-N, NO3-N, and PO -P by G. verrucosa (97.1, 99.7, 99.9, 99.7%) was significantly higher (P<0.05) compared with E. spinosum (90.5, 93.9, 96.4, 95.4%) and K. alvarezii (81.6%, 94.6%, 94.5%, and 95.4%, respectively). Meanwhile, E. spinosum was not significantly different (P>0.05) from K. alvarezii in removing NO2-N, NO3-N, and PO4-P but was more efficient in reducing NH3-N. Overall, G. verrucosa is the most efficient in intensive disposal of shrimp pond waste based on the results of this study.
Rocznik
Strony
108--118
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Doctoral Student, Fisheries Science Study Program, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar 90245, Indonesia
  • Aquaculture Engineering Study Program, Marine and Fisheries Polytechnic of Bone, Bone 92718, Indonesia
Bibliografia
  • 1. Ajjabi, L.C., Abaab, M., Segni, R. 2018. The red macroalga Gracilaria verrucosa in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance. Aquaculture International, 26(1), 253–266.https://doi.org/10.1007/s10499-017-0206-2
  • 2. Amoussou, N., Thomas, M., Pasquet, A., Lecocq, T. 2022. Finding the best match: A ranking procedure of fish species combinations for polyculture development. Life, 12(9). https://doi.org/10.3390/life12091315
  • 3. APHA. 2017. Standard Methods for the Examination of Water and Wastewater. In American Public Health Association. American Public Health Association. https://doi.org/ 10.1016/B978-0-12-382165-2.00237-3
  • 4. Ariadi, H., Fadjar, M., Mahmudi, M., Supriatna. 2019. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) inintensive ponds. AACL Bioflux, 12(6), 2103–2116.
  • 5. Aris, M., Labenua, R. 2020. Evaluation of land suitability of Kappaphycus alvarezii cultivation in the dry and rainy season. IOP Conference Series: Earth and Environmental Science, 584(1). https://doi.org/10.1088/1755-1315/584/1/012025
  • 6. Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., Nasri, N.S. 2018. Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12), 1–17. https://doi.org/10.3390/ ijerph15122851
  • 7. Azad, A.S., Estim, A., Mustafa, S., Sumbing, M.V. 2017. Assessment of nutrients inseaweed tank from land based integrated multitrophic aquaculture module. Journal of Geoscience and Environment Protection, 5(8), 137–147. https://doi.org/10.4236/gep.2017.58012
  • 8. Bosman, O., Soesilo, T.E.B., Rahardjo, S. 2021. Pollution index and economic value of vannamei shrimp (Litopenaeus vannamei) farming in indonesia. Indonesian Aquaculture Journal, 16(1), 51–60. https://doi.org/10.15578/IAJ.16.1.2021.51-60
  • 9. Bouwman, L., Beusen, A., Glibert P.M., Overbeek C., Pawlowski M., Herrera J., Mulsow, S., Yu, R. and Zhou, M. 2013. Mariculture: Significant and expanding cause of coastal nutrient enrichment. Environmental Research Letters, 8(4). https://doi.org/10.1088/1748-9326/8/4/044026
  • 10. Boyd, C.E., D’Abramo, L.R., Glencross, B.D., Huyben, D.C., Juarez, L.M., Lockwood, G.S., McNevin, A.A., Tacon, A.G.J., Teletchea, F., Tomasso, J.R., Tucker, C.S., Valenti, W.C. 2020. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578–633. https://doi.org/10.1111/jwas.12714
  • 11. Buschmann, A.H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M.C., Pereda, S. V., Gomez-Pinchetti, J.L., Golberg, A., Tadmor-Shalev, N., Critchley A.T. 2017. Seaweed production: overview of the global state of exploitation,farming and emerging research activity. European Journal of Phycology, 52(4), 391–406.https://doi.org/10.1080/09670262.2017.1365175
  • 12. Campanati, C., Willer, D., Schubert, J., Aldridge, D.C. 2022. Sustainable intensification of aquaculture through nutrient recycling and circular economies: More fish, less waste, blue growth. Reviews in Fisheries Science and Aquaculture, 30(2), 143–169. https://doi.org/10.1080/23308249.2021.1897520
  • 13. Chiquito-contreras, R. G.; Hernandez-adame, L.; Alvarado-castillo, G.; Mart, D.J.; Gabriela, S. and Chiquito-contreras, C.J. 2022. Aquaculture – production system and waste management for agriculture fertilization – A review. Sustainability, 14(7257), 1–13.
  • 14. Choi, T.S.; Kang, E.J.; Kim, J.H. and Kim, K.Y. 2010. Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae, 25(1), 17–26. https://doi.org/10.4490/algae.2010.25.1.017
  • 15. Chopin, T.; Cooper, J. A.; Reid, G.; Cross, S. and Moore, C. 2012. Open-water integrated multitrophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4(4), 209–220. https://doi.org/10.1111/j.1753-5131.2012.01074.x
  • 16. Chopin, T. and Tacon, A.G.J. 2021. Importance of seaweeds and extractive species in global aquaculture production. Reviews in Fisheries Science and Aquaculture, 29(2), 139–148. https://doi.org/10.1080/23308249.2020.1810626
  • 17. Chung, I. K.; Sondak, C. F. A. and Beardall, J. 2017. The future of seaweed aquaculture in a rapidly changing world. European Journal of Phycology, 52(4), 495–505. https://doi.org/10.1080/09670262.2017.1359678
  • 18. Clements, J.C. and Chopin, T. 2017. Ocean acidification and marine aquaculture in NorthAmerica: potential impacts and mitigation strategies. Reviews in Aquaculture, 9(4), 326– 341. https://doi.org/10.1111/raq.12140
  • 19. Dauda, A.B.; Ajadi, A.; Tola-Fabunmi, A.S. and Akinwole, A.O. 2019. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81–88. https://doi.org/10.1016/j.aaf.2018.10.002
  • 20. Dudgeon, S.R.; Kubler, J.E.; Vadas, R.L. and Davison, I.R. 1995. Physiological responses to environmental variation in intertidal red algae: Does thallus morphology matter? Marine Ecology Progress Series, 117(1–3), 193–206. https://doi.org/10.3354/meps117193
  • 21. Effendi, H.; Utomo, B.A. and Pratiwi, N.T.M. 2020. Ammonia and orthophosphate removal of tilapia cultivation wastewater with Vetiveria zizanioides. Journal of King Saud University - Science, 32(1), 207–212. https://doi.org/10.1016/j.jksus.2018.04.018
  • 22. FAO, 2022. The state of world fisheries and aquaculture 2022. Towards blue transformation.
  • 23. Rome, FAO. https://doi.org/https://doi.org/10.4060/cc0461en
  • 24. Felaco, L.; Olvera-Novoa, M.A. and Robledo, D. 2020. Multitrophic integration of the tropical red seaweed Solieria filiformis with sea cucumbers and fish. Aquaculture, 527(March). https://doi.org/10.1016/j.aquaculture.2020.735475
  • 25. Gao, G.; Beardall, J.; Bao, M.; Wang, C.; Ren, W. and Xu, J. 2018. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza. Biogeosciences, 15(11), 3409–3420. https://doi.org/10.5194/bg-15-3409-2018
  • 26. Gichana, Z.; Meulenbroek, P.; Ogello, E.; Drexler, S.; Zollitsch, W.; Liti, D.; Akoll, P. and Waidbacher, H. 2019. Growth and nutrient removal effciency of sweet wormwood(Artemisia annua) in a recirculating aquaculture system for Nile tilapia (Oreochromis niloticus). Water (Switzerland), 11(5), 1–14. https://doi.org/10.3390/w11050923
  • 27. Harrison, P.J. and Hurd, C.L. 2001. Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cahiers de Biologie Marine, 42(1–2), 71–82.
  • 28. Hayashi, L.; Yokoya, N. S.; Ostini, S.; Pereira, R. T. L.; Braga, E. S. and Oliveira, E. C. (2008). Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277(3–4), 185–191. https://doi.org/10.1016/j.aquaculture.2008.02.024
  • 29. Heriansah; Syamsuddin, R.; Najamuddin and Syafiuddin. (2022). Growth of Kappaphycusalvarezii in vertical method of multi-trophic system based on feeding rate. Egyptian Journal of Aquatic Biology and Fisheries, 26(5), 1197–1210. https://doi.org/10.21608/ ejabf.2022.267643
  • 30. Huo, Y. Z.; Xu, S. N.; Wang, Y. Y.; Zhang, J. H.; Zhang, Y. J.; Wu, W. N.; Chen, Y. Q. and He, P. M. (2011). Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China. Journal of Applied Phycology, 23(2), 173– 182. https://doi.org/10.1007/s10811-010-9584-9
  • 31. Irhayyim, T.; Fehér, M.; Lelesz, J.; Bercsényi, M. and Barsony, P. (2020). Nutrient removalefficiency and growth of watercress (Nasturtium officinale) under different harvesting regimes in integrated recirculating aquaponic systems for rearing common carp (Cyprinus carpio L.). Water (Switzerland), 12(5). https://doi.org/10.3390/w12051419
  • 32. Kambey, C. S. B.; Sondak, C. F. A. and Chung, I. K. (2020). Potential growth and nutrient removal of Kappaphycus alvarezii in a fish floating-net cage system in Sekotong Bay, Lombok, Indonesia. Journal of the World Aquaculture Society, 51(4), 944–959. https://doi.org/10.1111/jwas.12683
  • 33. Kang, Y. H.; Kim, S.; Choi, S. K.; Lee, H. J.; Chung, I. K. and Park, S. R. (2021). A comparison of the bioremediation potential of five seaweed species in an integrated fish- seaweed aquaculture system: implication for a multi-species seaweed culture. Reviews inAquaculture, 13(1), 353–364. https://doi.org/10.1111/raq.12478
  • 34. Kim, J. K.; Yarish, C.; Hwang, E. K.; Park, M. and Kim, Y. (2017). Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae, 32(1), 1–13. https://doi.org/10.4490/algae.2017.32.3.3
  • 35. Melendres, A. R. and Largo, D. B. (2021). Integrated culture of Eucheuma denticulatum, Perna viridis, and Crassostrea sp. in Carcar Bay, Cebu, Philippines. Aquaculture Reports,20, 100683. https://doi.org/10.1016/j.aqrep.2021.100683
  • 36. Munawan; Kasim, M. and Ruslaini. (2021). Growth rate of Eucheuma denticulatum cultivated in horizontal net and vertical net. IOP Conference Series: Earth and Environmental Science, 925(1). https://doi.org/10.1088/1755-1315/925/1/012018
  • 37. Mustafa, A.; Paena, M.; Athirah, A.; Ratnawati, E.; Asaf, R.; Suwoyo, H.S.; Sahabuddin, S.; Hendrajat, E.A.; Kamaruddin, K.; Septiningsih, E.; Sahrijanna, A.; Marzuki, I. and Nisaa, K. 2022. Temporal and spatial analysis of coastal water quality to support application of whiteleg shrimp Litopenaeus vannamei intensive pond technology. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052659
  • 38. Nardelli, A.E.; Chiozzini, V.G.; Braga, E.S. and Chow, F. 2019. Integrated multi-trophicfarming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. Journal of Applied Phycology, 31(2), 847–856. https://doi.org/10.1007/s10811-018-1581-4
  • 39. Narvarte, B.C.V.; Genovia, T.G.T.; Hinaloc, L.A.R. and Roleda, M.Y. 2022. Growth, nitrate uptake kinetics, and biofiltration potential of eucheumatoids with different thallus morphologies. Journal of Phycology, 58(1), 12–21. https://doi.org/10.1111/jpy.13229
  • 40. Nederlof, M.A.J.; Verdegem, M.C.J.; Smaal, A.C. and Jansen, H.M. 2021. Nutrient retention efficiencies in integrated multi-trophic aquaculture. Reviews in Aquaculture, 14(3): 1194-1212. https://doi.org/10.1111/raq.12645
  • 41. Neori, A.; Chopin, T.; Troell, M.; Buschmann, A. H.; Kraemer, G.P.; Halling, C.; Shpigel, M. and Yarish, C. 2004. Integrated aquaculture: Rationale, evolution and stateof the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1–4), 361–391. https://doi.org/10.1016/j.aquaculture.2003.11.015
  • 42. Nobre, A.M.; Robertson-Andersson, D.; Neori, A. and Sankar, K. 2010. Ecological- economic assessment of aquaculture options: Comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306(1– 4), 116–126. https://doi.org/10.1016/j.aquaculture.2010.06.002
  • 43. Papageorgiou, N.; Dimitriou, P.D.; Chatzivasileiou, D.; Tsapakis, M. and Karakassis, I.2023. Can IMTA provide added ecosystem value services in the fish farms of Greece? Frontiers in Marine Science, 9 (January). https://doi.org/10.3389/fmars.2022.1083099
  • 44. Pham, T.L. and Bui, M.H. 2020. Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: Formation of bioflocculation and enhancement of removal efficiency. Journal of Chemistry, 2020, 809272. https://doi.org/10.1155/2020/8094272
  • 45. Pratiwi, N.T.M.; Widigdo, B. and Syifa, D.A. 2020. Water quality and organic content from intensive system of vaname production at coastal area of Sumur, Pandeglang, Banten. IOP Conference Series: Earth and Environmental Science, 420(1). https://doi.org/10.1088/1755-1315/420/1/012022
  • 46. Ramli, N.M.; Verreth, J.A.J.; Yusoff, F.M.; Nurulhuda, K.; Nagao, N. and Verdegem, M.C.J. 2020. Integration of algae to improve nitrogenous waste management in recirculating aquaculture systems: A review. Frontiers in Bioengineering and Biotechnology, 8(1004), 1–18. https://doi.org/10.3389/fbioe.2020.01004
  • 47. Rejeki, S.; Ariyati, R.W.; Widowati, L.L. and Bosma, R.H. 2018. The effect of three cultivation methods and two seedling types on growth, agar content and gel strength of Gracilaria verrucosa. Egyptian Journal of Aquatic Research, 44(1), 65–70. https://doi.org/10.1016/j.ejar.2018.01.001
  • 48. Roleda, M.Y. and Hurd, C.L. 2019. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 58(5), 552–562. https://doi.org/10.1080/ 00318884.2019.1622920
  • 49. Sahu, B.C.; Adhikari, S. and Dey, L. 2013. Carbon, nitrogen and phosphorus budget in shrimp (Penaeus monodon) culture ponds in eastern India. Aquaculture International, 21(2), 453–466. https://doi.org/10.1007/s10499-012-9573-x
  • 50. Santos, A.F.G.N.; Lucarevschi, N.; Batista, E.R. and Ferreira, S.G. 2022. Integrated system of red seaweed Kappaphycus alvarezii (Rhodophyta, Solieriaceae) and Clownfish Amphiprion ocellaris (Perciformes, Pomacentridae): An Experimental Study. Biol. Life Sci. Forum, 130. https://doi.org/10.3390/blsf2022013130
  • 51. Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-ezra, D.; Neori, A. and Guttman, L. 2018. The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA ) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture, 490(2), 260–269. https://doi.org/10.1016/j.aquaculture.2018.02.051
  • 52. Wang, Q.; Lan, L.; Li, H.; Gong, Q. and Gao, X. 2023. Effects of nitrogen source and concentration on the growth and biochemical composition of the red seaweed Grateloupiaturuturu (Halymeniaceae, Rhodophyta). Sustainability (Switzerland), 15(5). https://doi.org/10.3390/su15054210
  • 53. Widowati, L.L.; Prayitno, S.B.; Rejeki, S.; El, T.; Purnomo, P.W.; Ariyati, R.W. and Bosma, R.H. 2021. Organic matter reduction using four densities of seaweed (Gracilaria verucosa) and green mussel (Perna viridis) to improve water quality for aquaculture in Java, Indonesia. Aquat. Living Resour., 34(5), 1–11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a02cf959-1562-4d2c-a4a5-834c57866477
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.