PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive analysis of the hydrogen generation technology through electrochemical water and industrial wastewater electrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most renewable energy sources are intermittent and seasonal, making energy storage and consumption problematic. Hydrogen gas can save and convey chemical energy, making it a promising sustainable energy source. Electrochemical water electrolysis technology’s sustainable and efficient hydrogen gas production attracts global attention. Higher hydrogen production rates enhance hydrogen volumetric energy capacity by storing intermittent hydrogen gas in high-pressure tanks. Pressurized storage tanks are cost-effective and efficient. Hydrogen gas may be stored economically and efficiently in pressurized tanks, making electrochemical water electrolysis a sustainable energy source. This paper introduced hydrogen as an alternative to natural gas, detailed water electrolysis technologies for hydrogen production, and highlighted how they can manufacture hydrogen efficiently and cost-effectively. The theoretical volume of gaseous hydrogen and oxygen that could be produced by electrolyzing water under typical temperature and pressure (STP) circumstances, assuming a 100% efficiency rate of the process. Since there are always two moles of hydrogen produced by electrolysis and one mole of gas occupies the same volume, the volume of hydrogen developed from water is twice that of oxygen. The volume of liberated oxygen is 0.21 (L/min), and the volume of liberated hydrogen is 0.42 (L/min) with a current density of 30 A, for instance, the tracer’s diffusion coefficient for all conceivable flow rates. A maximum value of 90 liters per hour was determined to be the threshold at which the diffusion coefficient increased with increasing flow rate. It would appear that the diffusion coefficient remains unchanged at flow rates greater than 90 liters per hour.
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 89 poz., rys., tab., wz.
Twórcy
  • Chemical Engineering Department, University of Technology, Baghdad, Iraq
  • Petroleum and Natural Gas Institute, Faculty of Earth Science and Engineering, University of Miskolc, 3515, Egyetemvaros, Miskolc, Hungary
  • Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain
  • Chemical Engineering Department, University of Technology, Baghdad, Iraq
  • Chemical and Biochemical Engineering Department, Missouri University of Science and Technology (Missouri S&T), Rolla, MO, 65409, USA
  • Civil Engineering Department, University of Technology, Baghdad, Iraq
  • Applied Science Department, University of Technology, 10011 Baghdad, Iraq
  • Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain
  • Department of Energy Engineering, College of Engineering, University of Baghdad, Iraq
  • Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
  • Chemical Engineering Department, Higher Technological Institute, 10th of Ramadan City, Egypt
Bibliografia
  • 1. Turner, J.M. (2022). The matter of a clean energy future. Science 376(6600), 1361–1361. DOI:10.1126/science.add5094.
  • 2. Mulugetta, Y., Sokona, Y., Trotter, P.A., Fankhauser, S., Omukuti, J., Somavilla Croxatto, L., Steffen, B., Tesfamichael, M., Abraham, E. & Adam, J.-P. (2022). Africa needs context-relevant evidence to shape its clean energy future. Nature Energy 7(11), 1015–1022. DOI: 10.1038/s41560-022-01152-0.
  • 3. Yi, S., Abbasi, K.R., Hussain, K., Albaker, A. & Alvarado, R. (2023). Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help. Gondwana Res. 117, 41–55. DOI: 10.1016/j. gr.2022.12.021.
  • 4. Saqib, N., Duran, I.A., & Ozturk, I. (2023). Unraveling the interrelationship of digitalization, renewable energy, and ecological footprints within the EKC framework: empirical insights from the United States. Sustainability 15(13), 10663. DOI: 10.3390/su151310663.
  • 5. Adebayo, T.S. & Alola, A.A. (2023). Drivers of natural gas and renewable energy utilization in the USA: How about household energy efficiency-energy expenditure and retail electricity prices. Energy 283, 129022. DOI: 10.1016/j.energy.2023.129022.
  • 6. Sayed, E.T., Olabi, A.G., Alami, A.H., Radwan, A., Mdallal, A., Rezk, A. & Abdelkareem, M.A. (2023). Renewable energy and energy storage systems. Energies 16(3), 1415, DOI: 10.3390/en16031415.
  • 7. Irfan, M., Rehman, M.A., Razzaq, A. & Hao, Y. (2023). What derives renewable energy transition in G-7 and E-7 countries, The role of financial development and mineral markets. Energy Econ. 121, 106661. DOI: 10.1016/j.eneco.2023.106661.
  • 8. Zheng, J., Du, J., Wang, B., Klemeš, J.J., Liao, Q. & Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew. Sust. Energy Rev. 172, 113046. DOI: 10.1016/j.rser.2022.113046.
  • 9. Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L.M., Zhou, X., Wen, Y., Aspuru-Guzik, A., Sargent, E.H. & She, Z.W. (2023). Machine learning for a sustainable energy future. Nature Rev. Mater. 8(3), 202–215. DOI: 10.1038/s41578-022-00490-5.
  • 10.Zhang, H. (2023). Key Technologies and Development Challenges of High-proportion Renewable Energy Power Systems. Highlights in Sci. Engin. Technol. 29, 137–142. DOI: 10.54097/hset.v29i.4527.
  • 11. Liu, J., Wang, S., Wei, N., Chen, X., Xie, H. & Wang, J. (2021). Natural gas consumption forecasting: A discussion on forecasting history and future challenges. J. Natural Gas Sci. Engin. 90, 103930. DOI: 10.1016/j.jngse.2021.103930.
  • 12. Agyeman, S.D. & Lin, B. (2023). The influence of natural gas (De) regulation on innovation for climate change mitigation: Evidence from OECD countries. Environ. Impact Asses. Rev. 98, 106961. DOI: 10.1016/j.eiar.2022.106961.
  • 13. Schmalensee, R., Stoker, T.M. & Judson, R.A. (1998). World carbon dioxide emissions: 1950–2050. Rev. Econ. Statis. 80(1), 15–27. DOI: 10.1162/003465398557294.
  • 14. Saleh, H.M. & Hassan, A.I. (2023). Green Conversion of Carbon Dioxide and Sustainable Fuel Synt. Fire 6(3), 128. DOI: 10.3390/fire6030128.
  • 15. Ritchie, H., Rosado, P. & Roser, M. (2024, January 4). Energy. Retrieved from https://ourworldindata.org/energy
  • 16. Noyan, O.F., Hasan, M.M. & Pala, N. (2023). A Global Review of the Hydrogen Energy Eco-System. Energies 16(3), 1484. DOI: 10.3390/en16031484.
  • 17. Teoh, Y.H., How, H.G., Le, T.D., Nguyen, H.T., Loo, D.L., Rashid, T. & Sher, F. (2023). A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel 333, 126525. DOI: 10.1016/j.fuel.2022.126525.
  • 18. Shadidi, B., Najafi, G. & Yusaf, T. (2021). A Review of Hydrogen as a Fuel in Internal Combustion Engines. Energies 14(19), 6209. DOI:10.3390/en14196209.
  • 19. Faramawy, S., Zaki, T. & Sakr, A.-E. (2016). Natural gas origin, composition, and processing: A review. J. Natural Gas Sci. Engin. 34, 34–54. DOI: 10.1016/j.jngse.2016.06.030.
  • 20. Moniz, E.J., Jacoby, H.D., Meggs, A.J., Armtrong, R., Cohn, D., Connors, S., Deutch, J., Ejaz, Q., Hezir, J. & Kaufman, G. (2011). The future of natural gas. Cambridge, MA: Massachusetts Institute of Technology. ISBN: 978-0-9828008-3-6.
  • 21. Okolie, J.A., Patra, B.R., Mukherjee, A., Nanda, S., Dalai, A.K. & Kozinski, J.A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Internat. J. Hydrogen Energy 46(13), 8885–8905. DOI: 10.1016/j.ijhydene.2021.01.014.
  • 22. Wang, Z., Zhang, X. & Rezazadeh, A. (2021). Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell. Energy Reports 7, 2594–2604. DOI: 10.1016/j.egyr.2021.04.060.
  • 23. Aminudin, M., Kamarudin, S., Lim, B., Majilan, E., Masdar, M. & Shaari, N. (2023). An overview: Current progress on hydrogen fuel cell vehicles. Internat. J. Hydrogen Energy 48(11), 4371–4388. DOI: 10.1016/j.ijhydene.2022.10.156.
  • 24. Singla, M.K., Nijhawan, P. & Oberoi, A.S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ. Sci. Pollut. Res. 28(13), 15607–15626. DOI:10.1007/s11356-020-12231-8.
  • 25. Le, O. & Loubar, K. (2010). Natural Gas : Physical Properties and Combustion Features. Natural Gas. DOI: 10.5772/9823.
  • 26. Rievaj, V., Gaňa, J. & Synák, F. (2019). Is hydrogen the fuel of the future? Transport. Res. Proc. 40, 469–474. DOI: 10.1016/j.trpro.2019.07.068.
  • 27 .Yilmaz, I. & Ilbas, M. (2008). An experimental study on hydrogen–methane mixtured fuels. International Commun. Heat Mass Transfer 35(2), 178–187. DOI: 10.1016/j.icheatmasstransfer.2007.06.004.
  • 28. İlbaş, M. & Karyeyen, S. (2015). A numerical study on combustion behaviours of hydrogen-enriched low calorific value coal gases. Internat. J. Hydrogen Energy 40(44), 15218–15226. DOI: 10.1016/j.ijhydene.2015.04.141.
  • 29. Fayaz, H., Saidur, R., Razali, N., Anuar, F.S., Saleman, A. & Islam, M. (2012). An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 16(8), 5511–5528. DOI: 10.1016/j.rser.2012.06.012.
  • 30. Ciniviz, M. & Köse, H. (2012). Hydrogen use in internal combustion engine: a review. Internat. J. Automot. Engin. Technol. 1(1), 1–15.
  • 31. Dash, S.K., Chakraborty, S. & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies 16(3), 1141. DOI: 10.3390/en16031141.
  • 32. Yang, W.-W., Ma, X., Tang, X.-Y., Dou, P.-Y., Yang, Y.-J. & He, Y.-L. (2023). Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel 345, 128234. DOI: 10.1016/j. fuel.2023.128234.
  • 33. Lim, J., Joo, C., Lee, J., Cho, H. & Kim, J. (2023). Novel carbon-neutral hydrogen production process of steam methane reforming integrated with desalination wastewater-based CO2 utilization. Desalination 548, 116284. DOI: 10.1016/j. desal.2022.116284.
  • 34. Okere, C.J. & Sheng, J.J. (2023). Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. Internat. J. Hydrogen Energy 48(97), 38188–38222. DOI: 10.1016/j.ijhydene.2023.06.135.
  • 35. Dai, F., Zhang, S., Luo, Y., Wang, K., Liu, Y. & Ji, X. (2023). Recent Progress on Hydrogen-Rich Syngas Production from Coal Gasification. Processes 11(6), 1765. DOI: 10.3390/pr11061765.
  • 36. Cao, L., Iris, K., Xiong, X., Tsang, D.C., Zhang, S., Clark, J.H., Hu, C., Ng, Y.H., Shang, J. & Ok, Y.S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 186, 109547. DOI: 10.1016/j.envres.2020.109547.
  • 37. Dincer, I. & Aydin, M.I. (2023). New paradigms in sustainable energy systems with hydrogen. Energy Convers. Manag. 283, 116950. DOI: 10.1016/j.enconman.2023.116950.
  • 38.Hota, P., Das, A. & Maiti, D.K. (2023). A short review on generation of green fuel hydrogen through water splitting. Internat. J. Hydrogen Energy 48(2), 523–541. DOI: 10.1016/j. ijhydene.2022.09.264.
  • 39. Ji, M. & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Internat. J. Hydrogen Energy 46(78), 38612–38635. DOI: 10.1016/j.ijhydene.2021.09.142.
  • 40. Hossain, M.A., Islam, M.R., Hossain, M.A. & Hossain, M. (2023). Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 72, 108170. DOI: 10.1016/j.est.2023.108170.
  • 41. Incer-Valverde, J., Korayem, A., Tsatsaronis, G. & Morosuk, T. (2023). Colors of hydrogen: Definitions and carbon intensity. Energy Conver. Manag. 291, 117294. DOI: 10.1016/j. enconman.2023.117294.
  • 42. Howarth, R.W. & Jacobson, M.Z. (2021). How green is blue hydrogen. Energy Sci. & Engin. 9(10), 1676–1687. DOI: 10.1002/ese3.956.
  • 43. Dincer, I. (2012). Green methods for hydrogen production. Internat. J. Hydrogen Energy 37(2), 1954–1971. DOI: 10.1016/j. ijhydene.2011.03.173.
  • 44.Dawood, F., Anda, M. & Shafiullah, G. (2020). Hydrogen production for energy: An overview. Internat. J. Hydrogen Energy 45(7), 3847–3869. DOI: 10.1016/j.ijhydene.2019.12.059.
  • 45. Viteri, J.P., Viteri, S., Alvarez-Vasco, C. & Henao, F. (2023). A systematic review on green hydrogen for off-grid communities –technologies, advantages, and limitations. Internat. J. Hydrogen Energy 48(52), 19751–19771. DOI: 10.1016/j. ijhydene.2023.02.078.
  • 46.Vidas, L. & Castro, R. (2021). Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Appl. Sci. 11(23), 11363. DOI: 10.3390/app112311363.
  • 47. Hassan, Q., Tabar, V.S., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvesting and Systems 11(1). DOI: 10.1515/ehs-2022-0134.
  • 48. Norouzi, N. (2022). Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method. Nuclear Engin. Technol. 54(4), 1288–1294. DOI: 10.1016/j. net.2021.09.035.
  • 49. Kumar, S.S. & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–A review. Mat. Sci. for Energy Technol. 2(3), 442–454. DOI: 10.1016/j.mset.2019.03.002.
  • 50. Hassan, Q., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. Internat. J. Hydrogen Energy 48(88), 34299–34315. DOI: 10.1016/j. ijhydene.2023.05.126.
  • 51. Le, T.T., Sharma, P., Bora, B.J., Tran, V.D., Truong, T.H., Le, H.C. & Nguyen, P.Q.P. (2024). Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Internat. J. Hydrogen Energy 54, 791–816. DOI: 10.1016/j.ijhydene.2023.08.044.
  • 52. Alkhadra, M.A., Su, X., Suss, M.E., Tian, H., Guyes, E.N., Shocron, A.N., Conforti, K.M., De Souza, J.P., Kim, N. & Tedesco, M. (2022). Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122(16), 13547–13635. DOI: 10.1021/acs.chemrev.1c00396.
  • 53. Lacasa, E., Cotillas, S., Saez, C., Lobato, J., Cañizares, P. & Rodrigo, M. (2019). Environmental applications of electrochemical technology. What is needed to enable full-scale applications. Current Opinion Electrochem. 16, 149–156. DOI: 10.1016/j.coelec.2019.07.002.
  • 54. Inocêncio, C.V.M., Holade, Y., Morais, C., Kokoh, K.B. & Napporn, T.W. (2022). Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochem. Sci. Adv. 3(3). DOI: 10.1002/elsa.202100206
  • 55. Galitskaya, E. & Zhdaneev, O. (2022). Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation. Environ. Technol. & Innov. 27, 102517. DOI: 10.1016/j.eti.2022.102517.
  • 56. Yu, M., Budiyanto, E. & Tüysüz, H. (2022). Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chemie Internat. Edition 61(1), e202103824. DOI: 10.1002/anie.202103824.
  • 57. Veeramani, K., Janani, G., Kim, J., Surendran, S., Lim, J., Jesudass, S.C., Mahadik, S., Kim, T.-H., Kim, J.K. & Sim, U. (2023). Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments. Renew. Sustainable Energy Rev. 177, 113227. DOI: 10.1016/j. rser.2023.113227.
  • 58. Chen, Z., Wei, W., Song, L. & Ni, B.-J. (2022). Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustainable Horizons 1, 100002. DOI: 10.1016/j.horiz.2021.100002.
  • 59.Jiang, T., Ansar, S.A., Yan, X., Chen, C., Fan, X., Razmjooei, F., Liao, H. (2019). In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Appl. Energy Mater. 2(12), 8809–8817. DOI: 10.1021/acsaem.9b01807.
  • 60.Du, X., Fu, W., Su, P., Cai, J. & Zhou, M. (2020). Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@ PC core–shell hybrid for sulfamethazine degradation. Chem. Engin. J. 398, 125681. DOI: 10.1016/j.cej.2020.125681.
  • 61. Yang, Q., Ke, J., Li, H., Huang, W., Wang, D., Liu, Y., Chen, J. & Guo, R. (2022). Mechanism and practical application of homogeneous–heterogeneous hybrid catalysts in electrolytic system for high COD chemical waste acid treatment. Chem. Engin. J. 449, 137767. DOI: 10.1016/j.cej.2022.137767.
  • 62.Xu, Y. & Zhang, B. (2019). Recent advances in electro-chemical hydrogen production from water assisted by alternative oxidation reactions. Chem. Electro. Chem. 6(13), 3214–3226. DOI: 10.1002/celc.201900675.
  • 63. Li, Y., Wei, X., Chen, L. & Shi, J. (2021). Electrocatalytic hydrogen production trilogy. Angew. Chem. Internat. Edition 60(36), 19550–19571. DOI: 10.1002/anie.202009854.
  • 64. Anwar, S., Khan, F., Zhang, Y. & Djire, A. (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. Internat. J. Hydrogen Energy 46(63), 32284–32317. DOI: 10.1016/j.ijhydene.2021.06.191.
  • 65. Santos, E., Nazmutdinov, R. & Schmickler, W. (2020). Electron transfer at different electrode materials: Metals, semiconductors, and graphene. Current Opinion Electroch. 19, 106–112. DOI: 10.1016/j.coelec.2019.11.003.
  • 66. Burke, L.D. & Naser, N.S. (2005). Metastability and electrocatalytic activity of ruthenium dioxide cathodes used in water electrolysis cells. J. Appl. Electrochem. 35, 931–938. DOI: 10.1007/s10800-005-5290-8.
  • 67. Over, H. (2021). Fundamental studies of planar single--crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. Acs Catalysis 11(14), 8848–8871. DOI: 10.1021/acscatal.1c01973.
  • 68. Yavuz, Y. & Koparal, A.S. (2006). Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J. Hazard. Mat. 136(2), 296–302. DOI: 10.1016/j.jhazmat.2005.12.018.
  • 69. Ollo, K., Aliou Guillaume, P.L., Placide, S.S., Etienne, K.K. & Lassiné, O. (2020). Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes. Mediter. J. Chem. 10(8), 799. DOI: 10.13171/mjc10802010271525ko.
  • 70. Lim, A., Kim, J., Lee, H.J., Kim, H.-J., Yoo, S.J., Jang, J.H., Park, H.Y., Sung, Y.-E. & Park, H.S. (2020). Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Appl. Catalysis B: Environ. 272, 118955. DOI: 10.1016/j.apcatb.2020.118955.
  • 71. Han, S.B., Mo, Y.H., Lee, Y.S., Lee, S.G., Park, D.H. & Park, K.W. (2020). Mesoporous iridium oxide/Sb-doped SnO2 nanostructured electrodes for polymer electrolyte membrane water electrolysis. Internat. J. Hydrogen Energy 45(3), 1409–1416. DOI: 10.1016/j.ijhydene.2019.11.109.
  • 72. Wang, S., Lu, A. & Zhong, C.-J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 8, 1–23. DOI: 10.1186/s40580-021-00254-x.
  • 73. Xu, X., Sun, H., Jiang, S.P. & Shao, Z. (2021). Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 1(4), 460–481. DOI: 10.1002/sus2.34.
  • 74. Audichon, T., Mayousse, E., Morisset, S., Morais, C., Comminges, C., Napporn, T.W. & Kokoh, K.B. (2014). Electro-activity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. Internat. J. Hydrogen Energy 39(30), 16785–16796. DOI: 10.1016/j.ijhydene.2014.07.170.
  • 75. Izurieta, E.M., Pedernera, M.N. & López, E. (2019). Study of a thermally integrated parallel plates reactor for hydrogen production. Chem. Engin. Sci. 196, 344–353. DOI: 10.1016/j.ces.2018.11.011.
  • 76. Fujiwara, N., Nagase, H., Tada, S. & Kikuchi, R. (2021). Hydrogen production by steam electrolysis in solid acid electrolysis cells. Chem. Sus. Chem. 14(1), 417–427. DOI: 10.1002/cssc.202002281.
  • 77. Ibrahim, D.S., Veerabahu, C., Palani, R., Devi, S. & Balasubramanian, N. (2013). Flow dynamics and mass transfer studies in a tubular electrochemical reactor with a mesh electrode. Computers & Fluids 73, 97–103. DOI: 10.1016/j. compfluid.2012.12.001.
  • 78. Reynard, D., Bolik-Coulon, G., Maye, S. & Girault, H.H. (2021). Hydrogen production on demand by redox-mediated electrocatalysis: A kinetic study. Chem. Engin. J. 407, 126721. DOI: 10.1016/j.cej.2020.126721.
  • 79. Bai, X.-S., Yang, W.-W., Tang, X.-Y., Yang, F.-S., Jiao, Y.-H. & Yang, Y. (2021). Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels. Energy 232, 121101. DOI: 10.1016/j.energy.2021.121101.
  • 80. Arenas, L., De León, C.P. & Walsh, F.C. (2019). Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion Electrochem. 16, 1–9. DOI: 10.1016/j.coelec.2019.02.002.
  • 81. Ahmed, M. & Dincer, I. (2019). A review on photo-electrochemical hydrogen production systems: Challenges and future directions. Internat. J. Hydrogen Energy 44(5), 2474–2507. DOI: 10.1016/j.ijhydene.2018.12.037.
  • 82. Ibrahim, D.S., A.P. Anand, A. Muthukrishnaraj, R. Thilakavathi & N. Balasubramanian. (2013). In situ electro-catalytic treatment of a Reactive Golden Yellow HER synthetic dye effluent. J. Environ.Chem. Engin. 1(1-2), 2–8. DOI: 10.1016/j. jece.2013.02.001.
  • 83. Lioubashevski, O., Katz, E. & Willner, I. (2004). Magnetic field effects on electrochemical processes: a theoretical hydrodynamic model. J. Phys.Chem. B 108(18), 5778–5784. DOI: 10.1021/jp037785q.
  • 84. Vázquez, L., Alvarez-Gallegos, A., Sierra, F., de León, C.P. & Walsh, F. (2010). Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling. Electrochim. Acta 55(10), 3446–3453. DOI: 10.1016/j.electacta.2009.08.067.
  • 85. Zhang, X., Pitol Filho, L., Torras, C. & Garcia-Valls, R. (2005). Experimental and computational study of proton and methanol permeabilities through composite membranes. J. Power Sourc.145(2), 223–230. DOI: 10.1016/j.jpowsour.2005.01.074.
  • 86. Martínez-Delgadillo, S., Gutiérrez, M., Barceló, I. & Méndez, J. (2010). Performance of a tubular electrochemical reactor, operated with different inlets, to remove Cr (VI) from wastewater. Comp. Chem. Engin. 34(4), 491–499. DOI: 10.1016/j.compchemeng.2009.05.016.
  • 87. Abdullah, T.A., Juzsakova, T., Le, P.C., Kułacz, K., Salman, A.D., Rasheed, R.T., Nguyen, D.D. (2022). Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water. Environ. Pollut. 306, 119372. DOI: 10.1016/j.envpol.2022.119372.
  • 88. Mohammed, M.N., Aljibori, H.S.S., Jweeg, M.J., Al Oqaili, F., Abdullah, T.A., Abdullah, O.I., Meharban F., Rashed R.T., Aldulaimi M., Al-Azawi, K. (2024). A Comprehensive Review on Graphene Oxide Based Nanocomposites for Wastewater Treatment. Polish J. Chem. Technol. 26(1), 64–79. DOI:10.2478/pjct-2024-0007.
  • 89. Abdullah, T.A., Juzsakova, T., Rasheed, R.T., Salman, A.D., Adelikhah, M., Cuong, L.P., & Cretescu, I. (2021). V2O5 Nanoparticles for Dyes Removal from Water. Chem. J. Moldova 16(2), 102–111. DOI: 10.19261/cjm.2021.911.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a02c0416-c808-4d1d-9049-724a232a473d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.