PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The qualitative-quantitative approach to microstructural characterization of nanostructured bainitic steels using electron microscopy methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Both qualitative and quantitative analyses play a key role in the microstructural characterization of nanobainitic steels focused on their mechanical properties. This research demonstrates various methods of microstructure analysis using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) techniques, taking into account these two approaches. The structural constituents have been qualitatively characterized using TEM and selected area electron diffraction (SAED), together with quantitative analysis based on the misorientation angle (EBSD). Besides, quantitative measurement of austenite with both blocky and film-like morphologies has been carried out. Due to the scale of nanostructured bainite, it is also important to control the thickness of bainitic ferrite and film-like austenite; hence, a method for measuring their thickness is presented. Finally, the possibility of measuring the prior-austenite grain size by the EBSD method is also demonstrated and compared with the conventional grain boundary etching method. The presented methods of qualitative and quantitative analyses form a complementary procedure for the microstructural characterization of nanoscale bainitic steels.
Słowa kluczowe
Wydawca
Rocznik
Strony
188--199
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Łukasiewicz Research Network-Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
autor
  • Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Łukasiewicz Research Network-Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
Bibliografia
  • [1] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Design of novel high strength bainitic steels: part 1. Mater Sci Technol. 2001;17:512–6. https://doi.org/10.1179/026708301101510348.
  • [2] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Design of novel high strength bainitic steels: part 2. Mater Sci Technol. 2001;17:517–22. https://doi.org/10.1179/026708301101510357.
  • [3] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol. 2002;18:279–84.
  • [4] Caballero FG, Bhadeshia HKDH. Very strong bainite. Curr Opin Solid State Mater Sci. 2004;8:251–7.
  • [5] Garcia-Mateo C, Caballero FG. Ultra-high-strength Bainitic Steels. ISIJ Int. 2005;45:1736–40.
  • [6] Garcia-Mateo C, Caballero FG. Design of carbide-free low-temperature ultra high strength bainitic steels. Int J Mater Res. 2007;98:137–43.
  • [7] Bhadeshia HKDH. Nanostructured bainite. Proc R Soc A Math Phys Eng Sci. 2010;466:3–18.
  • [8] Dong B, Hou T, Zhou W, Zhang G, Wu K. The role of retained austenite and its carbon concentration on elongation of low temperature bainitic steels at different austenitising temperature. Metals (Basel). 2018;8:931.
  • [9] Li X, Ma X, Subramanian SV, Shang C, Misra RDK. Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel. Mater Sci Eng A. 2014;616:141–7.
  • [10] Jiang T, Liu H, Sun J, Guo S, Liu Y. Effect of austenite grain size on transformation of nanobainite and its mechanical properties. Mater Sci Eng A. 2016;666:207–13.
  • [11] Królicka A, Radwański K, Ambroziak A, Żak A. Analysis of grain growth and morphology of bainite in medium-carbon spring steel. Mater Sci Eng A. 2019;768:138446.
  • [12] Lan HF, Du LX, Li Q, Qiu CL, Li JP, Misra RDK. Improvement of strength-toughness combination in austempered low carbon bainitic steel: the key role of refining prior austenite grain size. J Alloys Compd. 2017;710:702–10.
  • [13] Yamamoto S, Yokoyama H, Yamada K, Niikura M. Effects of the austenite grain size and deformation in the unrecrystallized austenite region on bainite transformation behavior and microstructure. ISIJ Int. 1995;35:1020–6.
  • [14] Lee S-J, Park J-S, Lee Y-K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scr Mater. 2008;59:87–90.
  • [15] Rees GI, Bhadeshia HKDH. Bainite transformation kinetics Part 1 modified model. Mater Sci Technol. 1992;8:985–93.
  • [16] Xu G, Liu F, Wang L, Hu H. A new approach to quantitative analysis of bainitic transformation in a superbainite steel. Scr Mater. 2013;68:833–6.
  • [17] Matsuzaki A, Bhadeshia HKDH. Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Mater Sci Technol. 1999;15:518–22.
  • [18] Kang S, Yoon S, Lee S-J. Prediction of bainite start temperature in alloy steels with different grain sizes. ISIJ Int. 2014;54:997–9.
  • [19] Whang SH. Nanostructured metals and alloys Processing, Microstructure, Mechanical Properties and Applications, Woodhead Publishing Series in Metals and Surface Engineering. Elsevier; 2011, Cambridge.
  • [20] Chen Z, Gu J, Han L. Decomposition characteristic of austenite retained in GCr15 bearing steel modified by addition of 1.3 wt.% silicon during tempering. J Mater Res Technol. 2019;8:157–66.
  • [21] Kozeschnik E, Bhadeshia HKDH. Influence of silicon on cementite precipitation in steels. Mater Sci Technol. 2008;24:343–7.
  • [22] Baran D, Królicka A. Evaluation of the possibility to obtain nanostructured bainite in high-carbon and high-silicon 9XC bearing steel. J Mater Eng Perform. 2020;29:5329–36.
  • [23] Zhu K, Shi H, Chen H, Jung C. Effect of Al on martensite tempering: comparison with Si. J Mater Sci. 2018;53:6951–67.
  • [24] Miyamoto G, Oh J, Hono K, Furuhara T, Maki T. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater. 2007;55:5027–38.
  • [25] Beladi H, Rohrer GS, Rollett AD, Tari V, Hodgson PD. The distribution of intervariant crystallographic planes in a lath martensite using five macroscopic parameters. Acta Mater. 2014;63:86–98.
  • [26] Beladi H, Adachi Y, Timokhina I, Hodgson PD. Crystallographic analysis of nanobainitic steels. Scr Mater. 2009;60:455–8.
  • [27] Gourgues AF, Flower HM, Lindley TC. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater Sci Technol. 2000;16:26–40.
  • [28] Królicka A, Radwański K, Janik A, Kustroń P, Ambroziak A. Metallurgical characterization of welded joint of nanostructured bainite: regeneration technique versus post welding heat treatment. Materials (Basel). 2020;13. https://doi.org/10.3390/ma13214841.
  • [29] Radwański K. Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy. Arch Civ Mech Eng. 2016;16:282–93.
  • [30] Suikkanen PP, Cayron C, DeArdo AJ, Karjalainen LP. Crystallographic analysis of isothermally transformed bainite in 0.2C-2.0Mn-1.5Si-0.6Cr steel using EBSD. J Mater Sci Technol. 2013;29:359–66.
  • [31] Chang LC, Bhadeshia HKDH. Austenite films in bainitic microstructures. Mater Sci Technol. 1995;11:874–82.
  • [32] Garcia-Mateo C, Jimenez JA, Lopez-Ezquerra B, Rementeria R, Morales-Rivas L, Kuntz M, et al. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater Charact. 2016;122:83–9.
  • [33] Timokhina IB, Beladi H, Xiong XY, Adachi Y, Hodgson PD. Nanoscale microstructural characterization of a nanobainitic steel. Acta Mater. 2011;59:5511–22.
  • [34] Chen Z, Gu J, Han L. Bainite transformation characteristics of high-si hypereutectoid bearing steel. Metallogr Microstruct Anal. 2018;7:3–10.
  • [35] Beladi H, Tari V, Timokhina IB, Cizek P, Rohrer GS, Rollett AD, et al. On the crystallographic characteristics of nanobainitic steel. Acta Mater. 2017;127:426–37.
  • [36] Kumar A, Makineni SK, Dutta A, Goulas C, Steenbergen M, Petrov RH, et al. A design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications. Mater Sci Eng A. 2019;759:210–23.
  • [37] Bhadeshia HKDH, Edmonds DV. Bainite in silicon steels: new composition–property approach Part 1. Met Sci. 1983;17:411–9.
  • [38] Kitahara H, Ueji R, Ueda M, Tsuji N, Minamino Y. Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Mater Charact. 2005;54:378–86.
  • [39] Garcia-Mateo C, Caballero FG, Bhadeshia HKDH. Superbainite. A novel very strong bainitic microstructure. Rev Metal. 2005;41:186–93.
  • [40] Bhadeshia HKDH. Case study: design of bainitic steels. Mater Sci. n.d.;1–6. https://www.phasetrans.msm.cam.ac.uk/2000/C9/C9-8.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a0286c56-7c1c-452f-b0d8-07d50bb0c394
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.