
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 4, PP. 357–362
Manuscript received November 12, 2013; revised December, 2013. DOI: 10.2478/eletel-2013-0043

Experimental Comparison of Synthesis Tools
Altera Quartus II and Synthagate

Marek Węgrzyn and Andrei Karatkevich

Abstract—The paper presents comparison between efficiency
of an industrial FPGA design software tool Altera Quartus II and
similar design software tool Synthagate by Syntezza company of
an academic origin. The experiments were performed using a se-
ries of examples describing the Mealy finite state machines; one-
hot state encoding was used in all cases. Area (number of used
logical blocks) was the main parameter used for the comparison.
Influence of the way of FSM description (in VHDL language)
on the quality of synthesis was studied. The obtained results
show that Synthagate in almost all cases performs synthesis more
efficiently and essentially quicker than Altera Quartus. Section
I presents motivation of the research. Section II reminds the
notion of FSM. Section III describes problems which had to be
solved to provide correctness of experimental comparison. Section
IV presents some details about state encoding way used in the
experiments. In Section V, the experimental results are presented.
Section VI describes the problems related to the comparison
which still have to be solved. Section VII presents the conclusions
from the experiments. Section VIII suggests possible reasons of
the detected situation.

Keywords—Logic design, state machines, logic devices, FPGA,
VHDL

I. INTRODUCTION

DESIGNERS of the CAD systems of an academic origin
often claim that their tools are much more efficient

than the industrial CAD tools both in size and speed of the
obtained designs [1]–[5]. Some of the experiments described
in the publications show that area of the devices constructed
by the academic and industrial tools differs several times in
average. It is demonstrated among others in [3], where an
academic tool DEMAIN, developed in the Warsaw University
of Technology, is compared with the industrial tools, such as
Altera MAX+Plus II, Quartus II and Leonardo Spectrum. Gain
in size provided by DEMAIN in comparison with the industrial
tools is about two times in average for sequential devices and
several times for combinational logic.

The authors decided to perform some experiments for
checking such claims. Two systems have been experimentally
compared: a popular industrial tool Altera Quartus II (version
12) [6] and tool Synthagate by Synthezza company [7], which
uses the algorithms developed in Bar Ilan University (Israel)
by the team lead by S. Baranov [8]. The sequential FPGA
devices were synthesized, specified by the finite state machine
descriptions.

M. Wegrzyn and A. Karatkevich are with the Institute of
Computer Engineering and Electronics, University of Zielona Góra,
Z. Szafrana 2, 65-516 Zielona Góra, Poland (e-mails: {M.Wegrzyn;
A.Karatkevich}@iie.uz.zgora.pl).

S0
/

out_Moore

State box

State name

Moore output

Decision arc

X / out_Mealy

Input Mealy outputS0
Y=0

S1
Y=1

XX
_

Example of FSM

Fig. 1. Elements of finite state machines.

II. FINITE STATE MACHINES

Finite State Machine (FSM) [9] is a mathematical model
that describes a digital system with memory, i.e. a sequential
logic circuit. It is an abstract machine that at each moment
of (discrete) time can be in one of a finite numbers of states,
obtain one of a finite numbers of possible inputs and generate
one of a finite number of outputs. Next state is a function of
current state and current input; current output is a function
of current state (Moore automaton [10]) or a current state
and current input (Mealy automaton [11]). Elements of the
mentioned models are shown in Fig. 1; for the details see [9],
[12], [13]. In our experiments we have used the Mealy state
machines, which are (in a sense) more general than the Moore
automata.

A finite state machine can be represented, among others, as
a state transition table (Fig. 2) or as a state diagram (Fig. 3).

III. NOTES ON THE WAY OF SPECIFICATION

The first experiments demonstrated that Synthagate seems
to be much more efficient synthesis tool than Quartus, but it
could be caused partially by the fact that two compared tools
interpret the VHDL descriptions in different ways.

Synthagate obtains its input description of an FSM in
a KISS2-like text format, as shown in Fig. 2 (the corresponding
graph representation of the FSM is shown in Fig. 3).

There are many ways to describe FSMs as synthesizable and
efficient HDL models. A traditional representation of Mealy
and Moore state machines as circuits consists of three main
blocks: next state block, outputs block and register (memory
block). In Mealy machine its outputs are determined by the
current state and the inputs. In Moore machine its outputs are
determined only by its current state. For VHDL, process state-
ment is the most suitable way for describing FSMs. Designers
may specify several processes, depending on how the different
parts of the model are considered and decomposed. General
information about all models of automata is systematized in
Fig. 4. However, each description of automaton must include:

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

358 M. WĘGRZYN, A. KARATKEVICH

a1 a2 x6 y8y9 1

a1 a5 ~x6*x7 y6 2

a1 a5 ~x6*~x7 y3y6y10 3

a2 a2 x4*x1 y1y2 4

a2 a6 x4*~x1 y3y4 5

a2 a4 ~x4 y4 6

a3 a6 1 y3y4 7

a4 a1 x5 -- 8

a4 a2 ~x5*x1 y8y9 9

a4 a6 ~x5*~x1 y3y4 10

a5 a2 x1*x2*x3 y1y3 11

a5 a3 x1*x2*~x3 y6y7 12

a5 a2 x1*~x2 y1y3 13

a5 a4 ~x1 y4 14

a6 a5 x6 y6y7 15

a6 a6 ~x6 y3y4 16

Fig. 2. An example of FSM description in Synthagate’s input format.

a2

a1

a3

a4

a5

a6

~x4 / y4~x1*x4 / y3*y4

x1*x4 / y1*y2

~x6*~x7 / y3*y6*y10

~x6*x7 / y6

x6 / y8*y9

- / y3*y4

x5 / --

x1*~x5 / y8*y9

~x1*~x5 / y3*y4

x1*x2*x3 / y1*y3

x1*x2*~x3 / y6*y7

x1*~x2 / y1*y3

~x1 / y4

x6 / y6*y7

~x6 / y3*y4

Fig. 3. Graph representation of the FSM corresponding to the description
from Fig. 2.

• variable, which value is defined by a state of automaton;
• clock;
• specification of the state transition flow;
• specification of outputs;
• reset (synchronous or asynchronous).
Synthagate converts an FSM state transition table (Fig. 2)

into a VHDL or Verilog description, using the strictly reduced
subsets of these languages, which contain only the synthesiz-
able constructs. Fragment of such description (in VHDL) is
shown in Fig. 5. The problem is that Altera Quartus interprets
this description in such a way that there is a flip-flop added
for every output signal in a synthesized device. That happens
because the values of the signals are assigned inside a process
having a clock signal (CLK) on its sensitivity list [12].

However, the Synthagate tool synthesizes for such descrip-
tions the devices with purely combinational outputs. Naturally,
such devices have less flip-flops and, in many cases, less

a)

Moore

One - process Two - process Three - process

clock & transition & output

clock & transition,

output outside process

clock & transition, output

clock & output, transition

clock, transition & output

clock, transition,

output outside process

clock, transition, output

b)

Mealy

One - process Two - process Three - process

clock & transition & output clock & transition, output

clock & output, transition

clock, transition & output

clock, transition, output

Fig. 4. Structure of state machine HDL models: a) Moore type, b) Mealy
type.

begin

 process (clk, rst)

 procedure proc_Girl10 is

 begin

 y1 <= '0'; y2 <= '0';

 y3 <= '0'; y4 <= '0';

 y6 <= '0'; y7 <= '0';

 y8 <= '0'; y9 <= '0';

 y10 <= '0';

 case current_Girl10 is

 when s1 =>

 if (x6) = '1' then

 y8 <= '1';

 y9 <= '1';

 current_Girl10 <= s2;

 elsif (not x6 and x7) = '1' then

 y6 <= '1' ;

 current_Girl10 <= s5;

 else

 y3 <= '1';

 y6 <= '1';

 y10 <= '1';

 current_Girl10 <= s5;

 end if;

 ...

 end process;

Fig. 5. A fragment of an FSM description in VHDL (Synthagate).

logical blocks. That means that different VHDL descriptions
should be used for two tools to ensure purity of the experi-
ments.

Values can be assigned to the output signals outside the
processes having CLK in the sensitivity list (in another process
or outside the processes). For this reason specifications used
for Quartus were changed in such a way that the values are
assigned to the output signals outside the process which has
the clock signal on its sensitivity list. A fragment of such
description (of the same automaton as described in Fig. 5) is
shown in Fig. 6.

The experiments with Quartus II show that such description
leads to synthesis of the devices with combinational outputs
and of less area. However, another problem was detected
related to such variant of specification. The devices synthe-
sized by Altera Quartus using such description have separate

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

EXPERIMENTAL COMPARISON OF SYNTHESIS TOOLS ALTERA QUARTUS II AND SYNTHAGATE 359

FSM_machine_1: process (clk, reset)

 begin

 if reset='1' then

 stan <= st1;

 elsif clk'event and clk = '1' then

 case stan is

 when st1 =>

 if x(6) = '1' then

 stan <= st2;

 elsif x(6) = '0' and x(7) = '1' then

 stan <= st5;

 elsif x(6) = '0' and x(7) = '0' then

 stan <= st5;

 end if;

 when st2 =>

 ...

 end process;

Y_assignment:

 y <= "0000000110"

 when (stan=st1 and (x(6)='1'))

 else "0000010000"

 when (stan=st1 and (x(6)='0' and x(7)='1'))

 else "0010010001"

 when (stan=st1 and (x(6)='0' and x(7)='0'))

 else

 ...

Fig. 6. A fragment of an alternative FSM description (variant 1).

Next state

function

Output

function
Registers

X
Y

Fig. 7. Structure of a device designed by Altrera Quartus from the
specification shown in Fig. 6.

Combinatorial

circuit

Registers

X Y

Fig. 8. Structure of a device designed by Synthagate.

combinational parts generating output signals and input signals
for the flip-flops. Such device has a structure as shown in Fig. 7
At the same time Synthagate performs common minimization
of both output and next state functions, which allows reducing
the device area. This leads to the device structure shown in
Fig. 8. Such structure requires less logical blocks (note that it
is true only for Mealy FSMs) [13], [14].

Common minimization of two systems of Boolean functions
requires (according to the interpretation by Altera Quartus)
description of all of them in the same process. However, as
far as the outputs of the device have to be purely combinational
(without the flip-flops), such process should not have a clock
signal in its sensitivity list. That can be obtained by means
of introducing an additional signal, which is intended for

Outputs_States: process (stan, x)

begin

 case stan is

 when st1 =>

 if x(6) = '1' then

 stan_temp <= st2; y <= "0000000110";

 elsif x(6) = '0' and x(7) = '1' then

 stan_temp <= st5; y <= "0000010000";

 elsif x(6) = '0' and x(7) = '0' then

 stan_temp <= st5; y <= "0010010001";

 else stan_temp <= st1; y <= "0000000000";

 end if;

 ...

end process;

FSM_machine_2: process (clk, reset)

begin

 if reset='1' then

 stan <= st1;

 elsif clk'event and clk = '1' then

 stan <= stan_temp;

 end if;

end process;

Fig. 9. A fragment of an alternative FSM description (variant 2).

remembering a next FSM state, and an additional process,
which assigns the value of the mentioned signal to the variable
describing a current state of the automaton. This new process
has to have CLK in its sensitivity list.

For this reason one more variant of the specification was
developed, shown in Fig. 9. Such description allows to obtain
much better synthesis results, using Altera Quartus II. For the
considered example (Fig. 3) result of synthesis by Quartus
consists of 34 logical blocks, if the description shown in Fig. 6
is used, and only 23 logical blocks, if the same automaton is
described as shown in Fig. 9 (when “area” was selected as the
main optimization criterion).

This variant was used for the comparison, as far as it seems
that such approach allows to compare two tools in the proper
way.

IV. NOTES ON THE STATE ENCODING

There are several methods of state encoding of the finite
state machines. Generally they can be divided into the methods
trying to minimize the number of the used flip-flops (the
minimal necessary number of the flip-flops is dlog2ne, where
n is the number of states) and the one-hot encoding (where
number of required flip-flops is the same as the number of the
states. Normally at each state one flip-flop is set, and all other
flip-flops are reset). The classical synthesis methods usually
used the binary encoding and minimized number of flip-flops;
however, for the FPGA synthesis it is common to use one-
hot state encoding [15], because in such case the excitation
functions are simpler, and for the FPGA structures it means
lower number of logical blocks in most cases. Most synthesis
tools allow user to select a state encoding method, and in
the FPGA synthesis tools such as Altera Quartus II the one-
hot encoding is usually the default encoding method. For the
details on influence of state encoding on speed and hardware
consumption see, for example, [14], [16], [17].

Methods of representing of states in VHDL language are
described in detail in [13], [16], [18]. For the one-hot state
encoding it is especially convenient to use the enumeration

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

360 M. WĘGRZYN, A. KARATKEVICH

type name is (state [, state]);

type StateType is (S0, S1, S2, S3);

…

signal STATE: StateType;

…

STATE <= S2;

Fig. 10. Example of applying enumeration type to description of states.

TABLE I
PARAMETERS OF THE TEST SAMPLES

Group Number Number Number Number
of inputs of outputs of states of transitions

Small 5 – 43 8 – 30 11 – 47 37 – 143
Medium 16 – 65 13 – 209 17 – 274 111 – 712
Large 45 – 65 24 – 209 79 – 274 383 – 1564
Great 63 – 68 54 – 112 174 – 1275 4900 – 10980
SuperGreat 70 – 75 70 – 112 199 – 1806 24422 – 84993

data type (Fig. 10). Such approach was used in the described
experiments.

V. EXPERIMENTAL RESULTS

For the experiments a series of state machine descriptions
with binary inputs and outputs was used. Some of the examples
were otained from the academic sources (partially from the
student projects), some others are practical (industrial). The
examples were divided into 5 groups differing in their size:
Small, Medium, Large, Great, and SuperGreat, with average
number of states about 30, 100, 200, 700 and 1000, respec-
tively. Main qualitative parameters of the examples belonging
to different groups are presented in Tab. I. For all examples
and both tools the one-hot state encoding method was used
and area as the main optimization criterion was selected. The
input specifications for Quartus were generated using variant
2 presented above (Fig. 9).

Results of experiments for several examples from different
groups are presented in Tab. II and Tab. III. They also
demonstrate comparison between numbers of FPGA logic
blocks in the devices designed by two tools. Table II presents
comparison of the Synthagate results and the Quartus results
for the case, when the first (shown in Fig. 6; the converter
of the formats was developed as a part of research work by
Bukowiec [19]) variant of VHDL specification was used for
Quartus; Table III, correspondingly, presents such comparison
for the second variant (Fig. 9).

Table IV presents average results for all groups of examples
(95 FSM descriptions were used for the experiments), with
the second variant of VHDL specification. It is easy to see
that ratio of the size of the devices designed by Quartus and
Synthagate decreases with growing size of the examples. For
the group of biggest automaton which Quartus was able to
proceed, designs by Synthagate use in average 4 times less
logical blocks than designs by Quartus.

The obtained results demonstrate definitely, that Synthagate
is a more efficient and deeply optimizing tool for designing
sequential FPGA devices than Altera Quartus II. It is also
worth noting that Synthagate performs synthesis essentially

TABLE II
SELECTED RESULT OF THE EXPERIMENTS; VHDL DESCRIPTION AS IN

FIG. 6

Number of Number of Ratio of
Example Group blocks blocks area (%)

(Quartus) (Synthagate)

girl10 Small 34 19 56%
lift2 Small 127 48 38%
cpu Small 165 38 23%
sara Medium 470 114 24%
bs Medium 729 170 23%
gol Medium 956 141 15%
yaron Medium 2151 231 11%
mars2M Medium 2243 422 19%
bulln Large 5329 946 18%
exxm Large 6456 990 15%
mars2 Large 3500 566 16%
bigm2r Great – 3948 –
zoom Great – 4481 –
group15m Great – 5933 –
otherm Great – 6772 –

TABLE III
SELECTED RESULT OF THE EXPERIMENTS; VHDL DESCRIPTION AS IN

FIG. 9

Number of Number of Ratio of
Example Group blocks blocks area (%)

(Quartus) (Synthagate)

girl10 Small 23 19 83%
lift2 Small 61 48 79%
cpu Small 80 38 48%
sara Medium 233 114 49%
bs Medium 368 170 46%
gol Medium 449 141 31%
yaron Medium 848 231 27%
mars2M Medium 803 422 53%
bulln Large 2305 946 41%
exxm Large 3151 990 31%
mars2 Large 1312 566 43%
bigm2r Great 12622 3948 31%
zoom Great 17326 4481 26%
group15m Great 28468 5933 21%
otherm Great 26481 6772 26%

TABLE IV
AVERAGE RESULTS OF THE EXPERIMENTS FOR THE GROUPS OF

DIFFERENT SIZE

Average number Average number
Group of blocks of blocks Area (%)

(Quartus) (Synthagate)

Small 55 35 64%
Medium 540 216 40%
Large 2253 834 37%
Great 21224 5284 25%
SuperGreat – 18313 –

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

EXPERIMENTAL COMPARISON OF SYNTHESIS TOOLS ALTERA QUARTUS II AND SYNTHAGATE 361

quicker than Quartus. Quartus was unable to perform syn-
thesis for the examples of the group SuperGreat, when the
second variant of VHDL description was used; when the first
variant was used, Quartus was unable to perform synthesis for
both groups of biggest automaton – Great and SuperGreat.
Synthagate needed only few seconds for each of the examples
belonging to the group Great and few minutes for each of
SuperGreat examples.

VI. FURTHER RESEARCH

The experiments performed up to now do not provide the
answers for all the questions arising in the considered research
area. The following topics should be investigated for better
understanding of differences between two kinds of the design
tools.

1) The performed experiments were intended to compare
area of the synthesized devices, but comparison of speed
was not performed yet. Such comparison would be espe-
cially interesting for the case when speed is selected as
the main optimization criterion in both tools. Synthagate
allows calculating for the synthesized devices the critical
path length, which limits maximal possible frequency of
clock signal and hence maximal speed of the device.
Calculating of critical path for the Quartus synthesis
results would allow comparison of speed. According to
the results obtained up to now, Synthagate with selected
option of speed optimization generates in most cases the
devises consisting of less number of logic blocks, then
Altera Quartus with the option of area optimization.

2) To be sure that the results of Synthagate synthesis can
be implemented in real hardware, it should be checked
whether the blocks in the designs can indeed be con-
nected by wires and switches in an FPGA structure. Cer-
tain doubts are caused here by the fact that Synthagate
seems to consider combinational elements and flip-flops
of the designs independently, and in the FPGA structures
they are integrated into the logic blocks. Synthagate
allows generating the netlists in EDIF format, which
can be used for further steps of synthesis, performed by
other design tools, but actually it has only the libraries
for selected Xilinx FPGA families, not yet for Altera
FPGAs. That means that checking possibility of the
implementation of the results of Synthagate synthesis
in the Altera FPGAs requires additional research.

3) Having the presented results of the experiments, an
important question arises: what differences in the struc-
tures of the synthesized devices cause such a remark-
able difference in their sizes? To answer this question,
detailed analysis of the structure of the designs should
be performed. The authors hope that such analysis can
be made at least for the relatively simple examples,
and that it would allow to understand which steps of
the optimization are not performed successfully by the
commercial design tools.

4) Comparison between synthesis time for both tools seems
to be interesting and important. The results obtained
up to now demonstrate that synthesis times may have

the orders of magnitude difference, especially for the
biggest test examples. The authors suppose that detailed
analysis will allow understanding where is the bottleneck
of the industrial tool, however the difficulty is that we
usually do not know how long the separate steps of
synthesis process are executed. Maybe analysis of the
middle-size examples for which synthesis time differs
dramatically for both tools will help to study the causes
of the situation.

5) In the performed research VHDL language was used.
Both considered tools allow to use Verilog instead. It
would be useful to study the difference between two
tools when Verilog is selected as a hardware design
language. Whether different styles of Verilog description
affect essentially the design quality, as it happens in the
case of VHDL descriptions? Studying this question is
planned as one of the directions of future research.

6) The performed experiments are limited to two synthesis
tools. It would be interesting and useful to make sim-
ilar experiments with different CAD tools, such as for
example Xilinx ISE.

VII. CONCLUDING REMARKS

The research demonstrates that the CAD tool of an academic
origin solves the tasks of synthesis of sequential FPGA devices
more efficiently and quicker than one of the most popular
industrial synthesis tools. The experiments also show that the
difference is especially remarkable for the bigger examples.
An intriguing question is: why big corporations produce
relatively inefficient design tools, when it is possible to use the
algorithms that are quicker and provide better optimization?
Obviously, the industrial systems have richer and more user-
friendly interfaces, huge libraries and many other features,
which lack the tools created by small companies or university
teams. On the other hand, tools like Synthagate allow their
user to have more information about structure of the designed
devices. Both kinds of tools have their good and bad sides.
But it still does not explain why the corporations, in spite of
competition between them, do not use the efficient algorithms
of synthesis.

VIII. AN ATTEMPT OF EXPLANATION

The fact that commercial computer aided design tools are
often less efficient than they could be if they would use
different (known) algorithms of synthesis and optimization
is known widely enough. Certainly a situation is possible
such that an algorithm of an academic origin does not take
into account some practically important details and, being
theoretically efficient, cannot be applied for real-life projects.
However, certain experiments (such as presented in this paper
or in [3], [4]) demonstrate that the complete processes of
FPGA synthesis can be performed much better (and quicker)
than the commercial tools do that.

One of the possible explanations is that the most known
electronic design automation software, such as Altera Quartus
or Xilinx ISE, is produced by the corporations which are first
of all the manufacturers of the programmable logic devices

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

362 M. WĘGRZYN, A. KARATKEVICH

(such as Altera Corporation or Xilinx). Their income depends
mostly on the PLDs they sell, not on the computer-aided
design tools. They are able to make their design automation
software cheap and in some cases even free. Altera Quartus
II, for example, has a free version (Quartus II Web Edition)
which provides compilation and programming for a limited,
however wide number of Altera devices. Quartus II Subscrip-
tion Edition is also available for free download, with restricted
functionality (for full functionality a user has to pay for
a license). A very similar approach (free tools with limited
functionality and a paid license for full functionality) uses
Xilinx with its Xilinx ISE software.

The small companies of the academic origin cannot allow
themselves to provide free or very cheap software; on the other
hand, their tools usually do not have such rich interface and
such wide support of different families of the programmable
logic devices as the commercial tools provide. That is the
reason why the tools of academic origin have a very weak
position in competition with the commercial tools. In fact,
the market of the electronic design automation software is
dominated by a small number of corporations (such situation
can be described as an oligopoly; however, unlike in a typical
oligopoly, it leads not to higher costs of the sold goods
(software tools), but to lower quality of them).

The electronic companies earning by selling the FPGAs
and other integrated circuits are not interested in deep mini-
mization of the electronic devices, because such minimization
would reduce their benefits. Controlling the market of the
design tools, they do not allow such optimization to be widely
applied. That is one of the “conspiracy theories” explaining
why the most efficient optimization algorithms are ignored by
the big manufacturers of reconfigurable digital circuits and
are not used in the software tools which dominate the market.
However, it does not provide an idea of how this situation,
which is certainly not good for the consumers, can be changed.

REFERENCES

[1] S. Baranov, “ASMs in high level synthesis of EDA tool Synthagate,”
in Proceedings of the 4th IFAC Workshop on Discrete-Event System
Design, 2009, pp. 195–200.

[2] H. Belhadj, L. Gerbaux, M.-C. Bertrand, and G. Saucier, “Specification
and synthesis of communicating finite state machines,” in Synthesis for
Control Dominated Circuits. Elsevier Science Publishers B.V., North-
Holland, IFIP, 1993, pp. 91–102.

[3] M. Rawski, T. Luba, Z. Jachna, and P. Tomaszewicz, “The influence of
functional decomposition on modern digital design process.” in Design
of Embedded Control Systems. Springer-Verlag, 2005, pp. 193–204.

[4] M. Rawski, P. Tomaszewicz, G. Borowik, and T. Łuba, “Logic synthesis
method of digital circuits design for implementation with Embedded
Memory Blocks of FPGAs,” in Design of Digital Systems and Devices,
ser. Lecture Notes in Electrical Engineering. Berlin Heidelberg:
Springer-Verlag, 2011, vol. 79, pp. 121–144.

[5] A. Barkalov, L. Titarenko, and O. Hebda, “Optimization of Moore finite-
state-machine matrix circuit,” Pomiary, Automatyka, Kontrola, vol. 57,
no. 8, 2011.

[6] Design Software, Altera. [Online]. Available:
http://www.altera.com/products/software/sfw-index.jsp

[7] Synthezza, “Synthagate Overview.” [Online]. Available:
http://synthezza.com/synthagate-overview

[8] S. Baranov, Logic and System Design of Digital Systems. Tallinn: TUT
Press, 2008.

[9] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[10] E. Moore, “Gedanken-experiments on sequential machines,” Automata
Studies, Annals of Mathematical Studies, vol. 34, pp. 129–153, 1956.

[11] G. Mealy, “A method to synthesizing sequential circuits,” Bell System
Technical Journal, pp. 1045–1079, 1955.

[12] M. Zwolinski, Digital System Design with VHDL. Pearson Education
Limited, 2004.

[13] S. Chmielewski and M. Węgrzyn, “Modelling and synthesis of automata
in HDLs,” Proceedings of SPIE : Photonics Applications in Astronomy,
Communications, Industry and High-Energy Physics Experiments 2006,
vol. 6347, p. 14, 2006.

[14] S. Golson, “State machine design techniques for Verilog and VHDL,”
Synopsys Journal of High-Level Design, 1994. [Online]. Available:
http://www.trilobyte.com/pdf/golson_snug94.pdf

[15] HDL Synthesis for FPGAs Design Guide, Xilinx, 1995.
[16] Lattice Semiconductor, “HDL Synthesis Coding Guidelines

for Lattice Semiconductor FPGAs,” 2005. [Online]. Available:
http://www.latticesemi.com/lit/docs/technotes/tn1008.pdf

[17] T. Luba, Computer design of digital circuits. Warsaw: WKL, 2000, (in
Polish).

[18] K. Skahill, VHDL for programmable logic. Addison-Wesley Publishing,
1996.

[19] A. Bukowiec, “Synthesis of finite state machines for FPGA devices
based on architectural decomposition,” Ph.D. dissertation, Uniwersytet
Zielonogórski, 2009.

Unauthenticated | 89.73.89.243
Download Date | 3/4/14 12:31 PM

