PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical modelling of the linear wear of the inside of a pipe transporting loose materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analityczne modelowanie ścieralności wnętrza rury transportującej materiały sypkie
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of an analysis of the linear wear of the inside of a pipe transporting loose materials. The aim is to present a mathematical model simulating the abrasive wear of individual elements of a transport pipe, depending on the volume of transported material. The model presented in this paper was developed based on the measurement data obtained from a dismantled transport system used in a railway handling terminal.
PL
W artykule przedstawiono wyniki analizy zużycia liniowego materiału wewnątrz rury służącej do transportu materiałów sypkich. Celem artykułu jest zaprezentowanie modelu matematycznego, który pozwala symulować zużycie poszczególnych elementów rury transportowej w zależności od ilości przesypanego materiału. Prezentowany w artykule model opracowany został w oparciu o dane pomiarowe uzyskane ze zdemontowanego systemu transportowego wykorzystywanego w kolejowym terminalu przeładunkowym.
Czasopismo
Rocznik
Strony
89--95
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology
autor
  • Rzeszow University of Technology
Bibliografia
  • 1. Anand A, Curtis JS, Wassgren CR, Hancock BC, Ketterhagen WR, Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chem. Eng. Sci. 2008; 63: 5821-5830.
  • 2. Anshu A, et al. Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science 2009; 64(24): 5268-5275.
  • 3. Beverloo WA, Leniger HA, Van de Velde J. The flow of granular solids through orifices. Chemical Engineering Science. 1961; 15: 260-269.
  • 4. Brown RL, Richards JC. Profile of flow of granules through apertures. Trans. Inst. Chem. Eng. 1960; 38: 243-256.
  • 5. Calderon C, Olivares M, Unac R, Vidales A. Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technology. 2017; 320: 43-50. https://doi.org/10.1016/j.powtec.2017.07.004
  • 6. Colonnello C, Reyes LI, Clement E, Gutierrez G. Behavior of grains in contact with the wall of a silo during the initial instants of a discharge-driven collapse. Physica A. 2014; 398: 35-42. https://doi.org/10.1016/j.physa.2013.12.010
  • 7. Chang CS, Converse HH, Lai FS. Flow rate of corn through orifices as affected by moisture content. Trans. of ASAE. 1984; 27(5): 1586-1589.
  • 8. Chang SC, Converse HH, Flow rates of wheat and sorghum through horizontal orifices. Trans. of ASAE. 1988; 31(1): 300-304.
  • 9. Glasser BJ, Goldhirsch I. Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys. Fluids. 2001; 13: 407-420.
  • 10. Huang Z, Shuiqing L. DEM simulation of wet granular-fluid flows in spouted beds: Numerical studies and experimental verifications. Powder Technology 2017; 318: 337-349. https://doi.org/10.1016/j.powtec.2017.05.009
  • 11. Kozicki J, Donze FV. Yade-open DEM: an opensource software using a discrete element method to simulate granular material. Eng. Comp. 2009; 26 (7- 8): 786-805.
  • 12. Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 2008; 63:1523-1541.
  • 13. Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: a critical appraisal, Electrochimica Acta 2001; 46(24-25): 3913-3929.
  • 14. Lawrence J, Maier DE, Hardin J, Jones CL. Development and validation of a headspace model for a stored grain silo filled to its eave. Journal of Stored Products Research 2012; 49: 176-183. https://doi.org/10.1016/j.jspr.2012.02.002
  • 15. Mankoc C, et al, The flow rate of granular materials through an orifice, Granul. Matter 2007; 9: 407-414.
  • 16. Markauskas D, Ramirez-Gomez A, Kacianauskas R, Zdancevicius E. Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture. 2015; 118: 247-258. https://doi.org/10.1016/j.compag.2015.09.004
  • 17. Mischler S, Debaud S, Landolt D, Wear-accelerated corrosion of passive metals in tribocorrosion systems, Journal of the Electrochemical Society. 1998; 145(3): 750-758.
  • 18. Mort P. et al. Dense granular flow - A collaborative study. Powder Technology. 2015; 284: 571-584.
  • 19. Neto L, Nascimento J, Marques J, Costa C, Mechanical properties of grain in silos for simulation designs. Engenharia Agricola. 2016; 36(4): 573-580.
  • 20. Oldal I, Keppler I, Csizmadia B, Fenyvesi L. Outflow properties of silos: the effect of arching. Adv. Powder Technol. 2012; 23: 290-297. https://doi.org/10.1016/j.apt.2011.03.013
  • 21. Remy B, Khinast JG, Glasser BJ. Discrete element simulation of free flowing grains in a four-bladed mixer. American Institute of Chemical Engineers Journal. 2009; 55(8): 2035-2048.
  • 22. Schwedes J. Influence of wall friction on silo design in process and structural engineering. German Chem. Eng. 1985; 3: 132-138.
  • 23. Stachowiak A, Zwierzyniecki W. Corrosive and mechanical wear calculation the integrated conception. Problems of Corrosion and Corrosion Protection of Materials. Special Issue of Journal Physicochemical Mechanics of Materials. 2004; 4(1): 98-101.
  • 24. Stachowiak A. New means for calculating sliding pairs corrosive and mechanical wear. Zagadnienia Eksploatacji Maszyn. 2007; 42: 44-51.
  • 25. Tardos GI, McNamara S, Talu I. Slow and intermediate flow of a frictional bulk powder in the Couette geometry. Powder Technol. 2003; 131:23-39.
  • 26. Tianqi T, Yurong H., Tong T., Dongsheng W. DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chemical Engineering Science. 2017; 172: 79-99. https://doi.org/10.1016/j.ces.2017.06.025
  • 27. Trinh T, Boltenhagen P, Delannay R, Valance A. Erosion and deposition processes in surface granular flows. Phys. Rev. E. 2017; 96(4): 042904. https://doi.org/10.1103/PhysRevE.96.042904
  • 28. Widulinski L, Kozicki J, Tejchman J. Numerical Simulations of Triaxial Test with Sand Using DEM. Archives of Hydro-Engineering and Environmental Mechanics. 2009; 56(3-4): 149-171.
  • 29. Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: Theoretical developments, Chemical Engineering Science. 2007; 62: 3378-3396.
  • 30. Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: A review of major applications and findings, Chemical Engineering Science. 2008; 63: 5728-5770.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a00ca9b2-7bdc-415d-b438-b386f02b8062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.