PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation and optimization of material removal rate and surface roughness in centerless grinding of magnesium alloy using Grey Relational Analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern enterprises concentrate on higher production rates with reduced time and admired quality. The surface integrity defines the quality of the product. Several processes like grinding, polishing and buffing have been used to improve the surface texture of the machined products. The most prominent challenge that is faced by an engineer is to manufacture a component with better surface integrity at reduced time, leading to increased production rate and improved profit. It is important to select proper combination of the machining parameters for obtaining the best results. The process called through feed centerless grinding helps in obtaining better surface texture. The main aim of this work is to examine the influence of various machining parameters such as regulating wheel angle, regulating wheel speed and depth of cut over surface roughness and machining time in machining magnesium alloy using silicon carbide grinding wheel. Grey relational analysis method is used for investigating the results. The optimal machining parameters were found with regulating wheel speed, regulating wheel angle and depth of cut being 46 rpm, 2 degree and 0.2 mm.
Rocznik
Strony
17--28
Opis fizyczny
Bibliogr. 20 poz., fot. kolor., 1 wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University College of Engineering, Tiruchirapalli, Tamilnadu, India
autor
  • Department of Mechanical Engineering, University College of Engineering, Tiruchirapalli, Tamilnadu, India
  • Department of Mechanical Engineering, University College of Engineering, Tiruchirapalli, Tamilnadu, India
Bibliografia
  • [1] Khoi, P. B., Trung, D. D., Cuong, N. and Man, N. D.: Research on Optimization of Plunge Centerless Grinding Process using Genetic Algorithm and Response Surface Method, International Journal of Scientific Engineering and Technology, 4, 3, 207-211, 2015.
  • [2] Zhang, K., Yu, Y., Wang, W. and Li, H.: Experimental study on internal cylindrical grinding of bearing steel with electrolytic in-process dressing grinding, International Journal of Advanced Manufacturing Technology, 1175-1185, 2015.
  • [3] Dong, D., Guo, G., Yu, D., An, Q. and Chen, M.: Experimental investigation on the effects of different heat treatment processes on grinding machinability and surface integrity of 9Mn2V, International Journal of Advanced Manufacturing Technology, 1165-1174, 2015.
  • [4] Wang, H., Chen, H., Fu, G. and Xia, H.: Relationship between grinding process and the parameters of subsurface damage based on the image processing, International Journal of Advanced Manufacturing Technology, 1-9, 2015.
  • [5] Alvarez, J., Barrenetxea, D., Marquinez, J. I., Bediaga, I. and Gallego, I.: Continuous variable feed rate: a novel method for improving infeed grinding processes, International Journal of Advanced Manufacturing Technology, 53-61, 2014.
  • [6] Rowe, W. B.: Rounding and stability in centerless grinding, International Journal of Machine Tools & Manufacture, 1-10 2014.
  • [7] Khoi, P. B., Trung, D. D. and Cuong, N.: A study on multiobjective optimization of Plunge centerless grinding process, International Journal of Mechanical Engineering and Technology, 5, 11, 31, 2014.
  • [8] Mondal, S. C. and Mandal, P.: Application of Artificial Neural Network for Modeling Surface Roughness in Centerless Grinding Operation, All India Manufacturing Technology, Design and Research, 2014.
  • [9] Barrenetxea, D., Alvarez, J., Marquinez, J. I., Gallego, II., Perello, I. M. and Krajnik, P.: Stability analysis and optimization algorithms for the set-up of infeed centerless grinding, International Journal of Machine Tools and Manufacture, 17-32, 2014.
  • [10] Alvarez, J., Zatarain, M., Barrenetxea, D., Ortega, N. and Gallego, I.: Semi-discretization for stability analysis of in-feed cylindrical grinding with continuous workpiece speed variation, International Journal of Advanced Manufacturing Technology, 113-120, 2013.
  • [11] Garitaonandia, I., Albizuri, J., Hernandez-Vazquez, J. M., Fernandes, M. H., Olabarrieta, I. and Barrenetxea, D.: Redesign of an active system of vibration control in a centerless grinding machine: Numerical simulation and practical implementation, Precision Engineering, 562- 571, 2013.
  • [12] Uhlmann, E., Hoghé, T. and Kleinschnitker, M.: Grinding wheel wear prediction at double face grinding with planetary kinematics using analytic simulation, International Journal of Advanced Manufacturing Technology, 2315-2321, 2013.
  • [13] Lin, X. H. Wang, Z. Z., Guo, Y. B., Peng, Y. F. and Hu, C. L.: Research on the error analysis and compensation for the precision grinding of large aspheric mirror surface, International Journal of Advanced Manufacturing Technology, 233- 239, 2014.
  • [14] Yao, C. F., Jin, Q. C., Huang, X. C., Wu, D. X., Ren, J. X. and Zhang, D. H.: Research on surface integrity of grinding Inconel 718’, International Journal of Advanced Manufacturing Technology, 1019-1030 2013.
  • [15] Rascalha, A., Brandão, L. C. and Ribeiro Filho, S. L. M.: Optimization of the dressing operation using load cells and the Taguchi method in the centerless grinding process, International Journal of Advanced Manufacturing Technology, 1103-1112, 32, 2013.
  • [16] Hashimoto, F., Gallego, I., Oliveira, J. F. G., Barrenetxea, D. , Takahashi, M., Sakakibara, K., Stal, H-O., Staadt, G. and Ogawa, K.:Advances in centerless grinding technology’, CIRP Annals - Manufacturing Technology, pp. 747-770, 2012.
  • [17] Janardhan, M. and Gopala Krishna, A.: Multi-Objective Optimization Of Cutting Parameters For Surface Roughness And Metal Removal Rate In Surface Grinding Using Response Surface Methodology, International Journal of Advances in Engineering and Technology, 2012.
  • [18] Lages Parente, M. P., Natal Jorge, R. M., Aguiar Vieira, A. and Monteiro Baptista, A.: Experimental and numerical study of the temperature field during creep feed grinding, International Journal of Advanced Manufacturing Technology, 127-134, 2012.
  • [19] Guo, G., Liu, Z., An, Q. & Chen, M.: Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive, International Journal of Advanced Manufacturing Technology, 135-142, 2011.
  • [20] Alvarez, J., Barrenetxea, D., Marquinez, J. I., Bediaga, I. and Gallego, I.: Effectiveness of continuous workpiece speed variation (CWSV) for chatter avoidance in through feed centerless grinding, International Journal of Machine Tools and Manufacture, 51, 911-917, 2011.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a00c79b7-21fa-4c94-8bc7-dcd97250a2ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.