
Measurement Automation Monitoring, Feb. 2015, vol. 61, no. 02    39 
 

Robert UGODZIŃSKI 1, Marcin KAMIŃSKI 1, Michał NOWICKI 2, Roman SZEWCZYK 1  
1 
INDUSTRIAL RESEARCH INSTITUTE FOR AUTOMATION AND MEASUREMENTS, Al. Jerozolimskie 202, 02-486 Warsaw 

2 
WARSAW UNIVERSITY OF TECHNOLOGY, Faculty of Mechatronics, sw. A. Boboli 8, 02-525 Warsaw 

   

 

Optimization measurement method for checkweigher  
 

Abstract 

 
The paper presents a new measurement method for checkweighers, where 

the measurement result is obtained by solving a simple optimization 

problem. The method assumes that the mass of constant geometry and  
a small masses spread is measured. The measurement accuracy changes as 

a function of noise-eliminating low-pass filter frequency was investigated. 

The state of knowledge about the filtration of checkweigher signal is also 
summarized.  
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1. Introduction 
 

Checkweighers are widely used in industry applications, 

especially on production lines. They are used for fast and precise 

control of the product mass. Their measurement speed can reach  

a couple hundred units per minute, and measurement accuracy is 

as high as 0.01 g [12]. 

 

 

 
 

Fig. 1.  Checkweigher [1] 

 

 

 

 
 

Fig. 2.  Checkweigher diagram. 1) weighed object, 2) output belt, 3) weigh module 

with mass transducer, 4) middle belt, where the mass measurement takes 

place, 5) input belt 

 

Increasing demand for more efficient production processes is 

forcing the product control to be done more effectively. 

In the case of weighing, it is done by measurement of mass of 

moving objects. The lack of object stopping necessity greatly 

speeds up the measurements, but also adds additional noise to the 

measurement signal, caused by the dynamic forces [13]. Possible 

causes are, for example, vibrations of the moving parts, their 

residual unbalance, and transient states caused by the entry of 

weighed objects on the belt, often with impacts. 

With the increase in measurement output performance, dynamic 

influence also increases, and singular measurement time 

decreases. This entails the need to use increasingly better signal 

processing algorithms.  

Estimation of the weighted mass is usually done on the base of 

the signal smoothed with a specified filter. In the Figs 3, 4, 5 and 6 

the ideal measurement signal, as well as comparison of ideal and 

real signal are shown. 

 

 

 
 

Fig. 3.  Model of ideal weight measurement in checkweighter 

 

 

 

 
 

Fig. 4.  The actual measurement signal (blue) and assumed ideal signal (black)  

 

As can be seen in the Fig. 4, the interferences generate 

considerable amount of signal noise. Additionally, one can 

observe that there is only 0.3 s of measurement time available in 

this particular example. All this causes considerable difficulties 

with the precise determination of the measured mass. 

The classic solution is the use of a low-pass filter with 

parameters constant in time. In such a filter, setting the lowest 

possible cutoff frequency would be desirable, but it would 

increase the response time and, consequently, force the need to 

reduce the frequency of measurements. 

In recent years, a number of methods to reduce this time was 

presented. One of them is a system of two or more low-pass filters 

with different cut-off frequencies proposed by R. Maier et al. [1]. 

In this solution, the filter switching is based on the steady-state 

criterion. 
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Another solution [2] involves the use of a filter with cut-off 

frequency changing linearly in time (from highest to lowest). The 

major difference between these filters is that the first works on 

discrete signals, and the other on continuous. However, in both 

cases parameters are variable in time and the response time 

limitation occurs. 

The discrete time-variant low pass filter described in [3] allows 

for further decrease of the response time and lower noise 

susceptibility. The examples of other filters can be found in [4-8]. 

The algorithms presented there are based on the weighing scale 

model based on the system with one degree of freedom [4, 5], but 

there are also algorithms that don’t use the models. There are 

adaptative analog and digital filters, Kalman filters [5], solutions 

based on neural networks [6-7], recursive filters [8] and others. 

Information about which signal part is subjected to estimation 

comes from the optical sensors located at the beginning and end of 

the conveyor belt. Works [9,10] are based on these solutions. 

Another method proposes K. Fukuda et al. [11]. According to this 

method, characteristic points of entry and exit of the weighted object 

are determined directly from the differentiated measurement signal, 

which is first smoothed using the specified filter. 

 

2. Developed measurement method 
 

As it was mentioned earlier, checkweighers tend to measure 

weight of one specific product, with more or less unchanging 

weight and permanent size. This means that each passage will be 

similar to one another and the weight will react similarly to 

objects entry and exit, where the highest vibration are generated, 

caused by the falling of the pack on conveyor belt or the impact on 

construction. 

With these issues in mind, one can propose a measurement 

method, which will be based on the identified model fitting to the 

given measurement signal. Then, the calculated ratio will be 

converted to the mass of a specific object. 

 

2.1. Preprocessing 
 

Before starting the analysis of the collected data some 

operations should be carried out. These include: 

1. The removal of the DC component 

2. The conversion of the values read by the ADC to grams by 

using an appropriate coefficient 

3. Filtering the measurement signal by the appropriate low-pass 

filter 

 

 

 
 

Fig. 5.  Filtered measurement signals for 747 g object, using the 8-order Butterworth 

filter with 30Hz cut-off frequency (blue). The model is marked in red 

 

 

 

 
 

Fig. 6.  Zoom-in of the high part of the signal from Fig. 4 

 

Especially the last point is very important: it allows for the 

elimination from the waveform the distortions generated by 

motors, and other vibrations transmitted by the weight. 

Unfortunately, filter order, cut-off frequency and filter type must 

be chosen experimentally, and too strong filter will result in too 

strong waveform distortion, while too weak will be insufficient to 

filter out the noise. 

 

2.2. Model build 
 

Model build is simple: multiple passing (>10) through the 

checkweigher of the same object is needed, and then the signal is 

averaged. Synchronization of the waveforms is done by the signal 

from built-in photocell, which informs about entering object.  

It should be noticed, that the model fits to the envelope of the 

measurement signals. One can also see the negative effects of the 

use of standard low-pass filters that need some time to stabilize 

under the sudden change of input signal. 

 

2.3. Mass measurement 
 

Using the obtained model of measurement signal for given 

object, deviations of individual waveforms can be tested with 

respect to the model. With these deviations the weight of the 

objects can be approximated. 

It was assumed in the project, that individual measurements 

differ from the model by the scaling factor. The measurement in 

grams is calculated by multiplication of the scaling factor and the 

mass of the object used for the model development. 

In this way, a single-variable optimization problem occurs, 

which can be written in the following form: 

 

   
 

               
  

      

                          

            
                  (1) 

 

where: k – scaling factor, w – the measured signal, for which the 

object mass has to be calculated, m – model signal for known 

mass, from, to– the range of the curve fitting. 

The limitation in optimization (1) can be omitted by reference to 

the unambiguous local minimum of a quadratic function, thereby 

speeding up the selected algorithm. 

In turn, the range in which the optimization function works is 

searched by the algorithm that for all possible ranges within set 

limits calculates the standard deviation between samples, and then 

it sums them up. Looking for a minimum we find the best possible 

range for optimization function. This process is relatively long, 

but it is performed once during the build of a model. The 
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optimization process itself, eg. for the range where there are about 

200 points, is performed very quickly and on average it takes  

a medium class computer about 6ms using Matlab 'lsqcurvefit’ 

functions 

Then the unknown mass is calculated from the following 

formula: 

 

                                    (2) 

 

As can be seen, quite good results were obtained in view of the 

fact that the belt was moving close to the maximum speed. 

Standard deviation of the results was 0.11 g. 

 

3. The influence of the low-pass filter cutoff 
frequency on the measurement accuracy 

 

It was stated earlier that the filter order and the filter cut-off 

frequency must be chosen manually, unfortunately, by an 

experimental method. However, for the purpose of testing it was 

decided to calculate the characteristics of the error depending on 

the filter cutoff frequency. 

It was done for the two different masses, 115 and 747 g, with 60 

passes registered for each of them. For every filter change the 

model was built again, and the range of the model fitting was 

adjusted. The 8-order filter was designed using the Butterworth 

method.  

 

 
 

Fig. 7.  The results of the analysis of 60 runs series measurement of the same object 

with automatic range adjustment and using a 8 order Butterworth filter with  

a cutoff frequency of 30 Hz 

 

 

 

 
 

Fig. 8.  Analysis for the 747g mass. Minimum in fcut = 22Hz 

 

 

 

 
 

Fig. 9.  Analysis for the 115g mass. Minimum in fcut = 14Hz 

 

From the above graphs one can see that choosing the appropriate 

filter cut-off frequency has a large impact on the accuracy of the 

results. Further work will go towards improved search algorithm 

of the best segment for the fitting and to test various functions that 

minimize the search time of the best segment. 

It can also be noted that the error/cut-off frequency dependence 

has many local minima, and therefore the only algorithm which 

could be used here and would accelerate the process of finding  

a suitable cut-off frequency is a genetic algorithm. 

 

4. Summary 
 

The developed measurement method already achieves better 

accuracy than the ones used so far, and makes the further 

improvement possible after additional work. 

The described solution is recommended when the measured 

objects are similar in terms of weight and size, and we only want 

to know the weight deviations between the individual objects. It is 

especially important on production lines with the control of 

completeness of the package, with low-mass objects inside. 

Further work will be carried out towards the improvement of the 

algorithm seeking out optimal fitting section, and a wider range of 

filters will also be tested. 
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