PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Heavy Metal Speciation on Arbuscular Mycorrhizal Fungi Associated with Phoenix dactylifera L. Growing in Moroccan Urban and Peri-Urban Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impacts of metal pollution on arbuscular mycorrhizal fungi (AMF) in rhizopheric soils of date palms in urban and peri-urban areas were studied. The objective was to assess the impact of rhizospheric soil contamination. Various chemical species of heavy metals on the AMF spore density associated with date palms were evaluated. A collection of date palm rhizospheric soil samples from eight sites including three boulevards, three gardens and two distinct areas of the Marrakesh palm grove was under study. These samples were used for counting endomycorrhizal fungal spores, for estimating mycorrhization state of root system and for physico-chemical analyses. A five-stage sequential extraction scheme was used to evaluate the fractionation of some heavy metals like lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn) and iron (Fe). Pearson’s correlation coefficients between AMF spore’s density and metal species were determined and a multiple linear regression was tested to predict AMF spore density from the chemical species content of soil. A mycorrhizal dependency of date palm was indicated, since a high frequency from 61 to 98% and a middle intensity from 10 to 47% of root colonization by AMF were recorded. The spore density from all sites was found in increasing order of boulevards, garden then palm groves. A significant correlation between AMF spore density and some metal species rhizospheric soil content was recorded; negative for sulfide-bound lead (r = -0.81) and zinc (r = -0.70) and for exchangeable fraction copper (Cu), (r = -0.79) whereas it is positive for exchangeable fraction zinc (r = 0.70). AMF spore density predictions from sulfide-bound Zinc and exchangeable fraction copper exhibited a good fit, with higher R2 value (0.91, p = 0.002). Since Date palm has a mycotrophic nature, the sustainability of the microbial populations associated with their roots might be ensured by modifying some chemical forms of heavy metals like sulfide-bound zinc and exchangeable fraction copper.
Twórcy
autor
  • Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
autor
  • Pharmacology, Neurobiology, Anthropobiology and Environment Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakesh 40000, Morocco
  • Laboratoire d’Aliments, Environnement et Santé, Département de Biologie, Faculté des Sciences et Techniques-Marrakech, Morocco
  • Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh, Morocco
Bibliografia
  • 1. Aubert G. 1978. Methodes d’analyse des Sols Edition C.R.D.P. Marseille. France.
  • 2. Babich H., Stotzky G. 1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol. (2), 99-145.
  • 3. Bago B., Cano C., Azco'n-Aguilar C. 2004. Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monox- enically on spatially heterogeneous culture media. Mycologia, 96, 452-462.
  • 4. Banat I.M., Marchant R., Rahman T.J. 2004. Geobacillus debilis sp. nov. a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. Int. J Syst. Evol. Microbiol. 54, 2197-2201.
  • 5. Bennisse R., Labat M., El Asli A., Brhada F.,Chandad F., Lorquin J., Pol Liegbott R, Hibti M., Qatibi A. 2004. Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World Journal of Microbiology & Biotechnology, 20, 759-766.
  • 6. Boyle M., Paul E.A. 1988. Vesicular-arbuscular Mycorrhizal associations with barley on sewage amended plots. Soil Biol.Biochem. 20, 945-948.
  • 7. Brundrett M. Bougher N., Dell B., Grove T., Malajczuk N. 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32.
  • 8. Cairney J.W.G., Meharg A.A. 1999. Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution, 106, 169-182.
  • 9. Calvet R. 2003. Constituants organiques dans le sol. Proprietes et fonctions. Tom 1: Constitution et structure. Phenomenes aux interfaces. Dunod. 159-218.
  • 10. Craul. P.J. 1999. Urban soils: applications and practices. (books.google.com). Canada.
  • 11. Del val C., Barea J.M., Azcon-aguilar C. 1999. Diversity of Arbuscular Mycorrhizal Fungus populations in heavy metal contaminated soils. Appl. Environ. Microbiol. 65, 718-723.
  • 12. Duponnois R., Hafidi M., Wahbi S., Sanon A., Galiana A., Baudoin E., Sanguin EL, Ba A, Prin Y, Bally R. 2012. La symbiose mycorhizienne et la fertilite des sols dans les zones arides: un outil biologique sous-exploite dans la gestion des terres de la zone sahelo-saharienne. IRD 349-367.
  • 13. El Faiz A., Duponnois R., Winterton P., Ouhammou A., Meddich A., Boularbah A., Hafidi M. 2015. Effect of Different Amendments on Growing of Canna indica L. Inoculated with AMF on Mining Substrate. International Journal of Phytoremediation, 17, 503-513.
  • 14. El Khalil H., El Hamiani O., Bitton G. 2008. Heavy Metal Contamination From Mining Sites In South Morocco: Monitoring Metal Content And Toxicity Of Soil Runoff And Groundwater. Environnemental Monitoring and Assessment, 136, 147-160.
  • 15. Entry J.A., Rygiewicz P.T., Watrud L.S., Donnelly P.K. 2002. Influence of adverse soilconditions on the formation and function of Arbuscular mycorrhizas. Advances in Environmental Research, 7, 123-138.
  • 16. Ferrol N., Gonzalez-Guerrero M., Valderas A., Benabdellah K., Azcón-Aguilar C. 2009. Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews, 3,551-559.
  • 17. Gadd G.M. 1993. Interactions of fungi with toxic metals. New Phytologis,t 124, 25-60.
  • 18. Ge S.S., Hang C.C., Zhang T. 2000. Adaptive neural network control for strict-feedback nonlinear systems using backstepping. Journal of Automatica, 3(6), 1835-1846.
  • 19. Gerdeman J.W., Nicolson T.H. 1963. Spore of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc. 46, 235-244.
  • 20. Gohre V., Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115-1122.
  • 21. Gonzalez-Guerrero M., 2005. Estudio de los mecanismos implicados en la homeostasis de metales pesados en el hongoformador de micorrizas arbusculares Glomus intraradices. Dissertation University of Granada.
  • 22. Gonzalez-Guerrero M., Melville L.H., Ferrol N., Lott J.N.A, Azcón-Aguilar C., Peterson R.L. 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the Arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 54, 103-110.
  • 23. Hildebrandt U, Kaldorf M., Bothe. H., 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154 709-717.
  • 24. Hildebrandt U., Regvar M., Bothe H., 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139-146.
  • 25. Jaiti F., Kassami M., Meddich A., El Hadrami I. 2008. Effect of Arbuscular Mycorrhization on the Accumulation of Hydroxycinnamic Acid Derivatives in Date Palm Seedlings challenged with Fusarium oxysporum f. sp. Albedinis. Journal of Phytopathology, 156, 11-12.
  • 26. Leyval C., Joner E.J., del Val C. 2002. Potential of Arbuscular mycorrhizal fungi for bioremediation. In: S. Gianinazzi. H. Schu’ epp, J.M. Barea, K. Haselwandter. Mycorrhizal technology in agriculture. Birkha user. Basel. 175-186.
  • 27. Leyval C., Singh B.R., Joner E.J. 1995. Occurence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water. Air and Soil Pollution, 84,203-216.
  • 28. Leyval C., Turnau K., Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7, 139-153.
  • 29. Leyval C., Weissenhorn I, Glashoff A., Berthelin J. 1994. Influence des metaux lourds sur la germination des spores de champignons endomycorhiziens a arhuscules dans les sols. Journal Acta Botanica Gallica: Botany Letters, 141, 523-528.
  • 30. Meddich A., Oihabi A., Jaiti F., Bourzik W., Hafidi M. 2015. Role of Arbuscular Mycorrhizal Fungi on vascular wilt and drought tolerance in date palm (Phoenix dactyLfera L.). Canadian Journal of Botany, 93(6), 369-377. https://doi.org/10.1139/ cjb-2014-0249
  • 31. Meddich A., Oihabi. A., Abbas Y, Bizid E. 2000. Role des champignons mycorhiziens a arbuscules de zones arides dans la resistance du trefle (Trfolium alexandrinum L.) au deficit hydrique. Agronomie, 20,283-295.
  • 32. Meharg A. 2003. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res. 107, 1253-1265.
  • 33. Morel Y.R. 1999. Barouki. Repression of gene expression by oxidative stress INSERM U490. Centre universitaire des Saints-Peres. 45 rue des Saints-Peres. 75006 Paris. France.
  • 34. Ouatiki E., Midhat L., Tounsi A., Amir S., Aziz F., Radi M., Ouahmane L. 2022. The association between Pinus halepensis and the Ectomycorrhizal fungus Scleroderma enhanced the phytoremediation of a polymetal-contaminated soil. International Journal of Environmental Science and Technology, 0123456789. https://doi.org/10.1007/sl3762-022-03993-4
  • 35. Oihabi A. 1991. Effet des endomycorhizes V.A sur la croissance et la nutrition minerale du palmier dattier. These de Doctorat d’Etat. Univ. Cadi Ayyad Marrakech. Maroc/Univ. Bourgogne Dijon. France.
  • 36. Ortega-Laro M.P., Siebe C., Estrada A., Webster R. 2007. Mycorrhizal inoculum potential of Arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time as affected by heavy metals and available. P.App. Soil Eco. 37,129-138.
  • 37. Pawłowska. T.E., Charvat 1.2004. Heavy-metal stress and developmental patterns of Arbuscular mycorrhizal fungi. Appl Environ Microbiol. 70, 6643-6649.
  • 38. Phillips J.M., Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55,158-161.
  • 39. Prasad M.N.V., Hagemeyer J. 1999. Heavy metal stress in plants. From molecules to ecosystems. Springer, 401.
  • 40. Radi M., Hamdali H., Meddich A., Ouahmane L., Hafidi M. 2014. Le potentiel mycorhizogene des sols urbains en zones semi-arides et la tolerance du Palmier dattier (Phoenix dactylfera L.) au deficit hydrique. Journal of Materials and Environmental Science, 5(6), 1957-1967.
  • 41. Radi M., Meddich A., Ouatiki E., Ouahmane L., Hafidi M., Ben Salem A. 2021. Effects of Urbanization on the Degradation of the Palm Grove Around the City of Marrakech. February, 323-337. https://doi.org/10.4018/978-l-7998-7512-3.ch016
  • 42. Raklami A., El Gharmali A., Ait Rahou Y., Oufdou K., Meddich A. 2021. Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa. International Journal of Phytoremediation, 23(2), 190-201. https://doi.org/10.1080/15226514.2020.1803206
  • 43. Raklami A., Tahiri A., Bechtaoui N., Abdelhay E.G., Pajuelo E., Baslam M., Meddich A., Oufdou K. 2021. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. Journal of Environmental Sciences (China), 99, 210-221. https://doi.org/10.1016/j.jes.2020.06.032
  • 44. Rodier K.R.1984. L’analyse de l’eau. Eaux naturelles. Eaux residuaires. Eau de mer. Dunodl365 p.
  • 45. Salt D.E, Smith R.D., Raskin I.1998. Phytoremediation. Plant Physiol. Plant Mol. Biol, 49, 643-668. in these Thimy D H 2009: impacts des metaux lourds sur l’interaction plante/ ver de terre/ micro- flore tellurique 169p.
  • 46. Sanchez M., Soriano M., Delgado G., Delgado R. 2002. Soil Quality in Mediterranean Mountain Environments. Published in Soil Sci. Soc. Am. J. 66, 948-958.
  • 47. Schwartz. R., Ting. C.S., King. J. 2001.Whole proteome PI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res. 11, 703-9.
  • 48. Shah K., Nongkynrih J.M., 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum, 51,618-634.
  • 49. Singh O.V., Labana S., Pandey G., Budhiraja R., Jain R.K. 2003 Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61, 405-412.
  • 50. Sposito G., Lund L.J., Chang A. 1982. Trace metal chemistry in arid- zone field soils amended with sewage sludge. I. Fractionation of Ni. Cu. Zn. Cd. and Pb in solid phases. Soil sci. Soc. Am. J. 46,260-264.
  • 51. Thimy D.H. 2009. Impacts des metaux lourds sur l’interaction plante/ ver de terre/ microflore tellurique. 169.
  • 52. Tremel-Schaub A., Feix I. 2005. Contamination des sols transferts des sols vers les plantes. 422.
  • 53. Trouvelot A., Kough J.L., Gianinazzi-Pearson. 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methode d’estimation ayant une signification fonctionnelle mycorrhizae: Physiology and genetics. ESM Dijon
  • 54. Van der Heijden M.G.A., Moutoglis R, Streitwolf- Engel R., Boller T.,Wiemken A,. Sanders I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity. ecosystem variability and productivity. Nature, 396, 7-75.
  • 55. Weissenhom I., Leyval C., 1995. Root colonization of maize by a Cd-sensitive and a Cd tolerant Glomus mosseae and cadmium uptake in sand culture. Plant and Soil, 175,233-238.
  • 56. William R.E., Pouyat R.V. 1997. The genesis, classification and mapping of soils in urban areas. Journal of Urban Ecosystems, 217-228.
  • 57. Wong L.T., Mui K.W., Hui P.S. 2006. A statistical model for characterizing common air pollutants in air. journal of Atmospheric Environment, 404246-404257.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a00b2ee3-ff4e-4e1c-a195-c590b496ed5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.