PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric vehicles: problems or solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the current directions of vehicle developments, as well as the barriers and opportunities for using electric vehicles instead of conventional vehicles. There is also mentioned a problem of the battery charging system. Compared to refueling gasoline powered vehicles, charging of battery electric vehicles takes considerably more time, which renders a single-purpose charging infrastructure inconvenient. However, an objective of this article is also to investigate the future market prospects of various types of EVs, with the economics of EVs in comparison to conventional cars. Only if the final driving costs can be considerably reduced will EVs gain significant market shares.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Transport, Koszalin University of Technology, Raclawicka 15-17, 75-620, Koszalin, Poland
  • Faculty of Mechanical Engineering, Department of Transport, Koszalin University of Technology
Bibliografia
  • 1. Ajanovic A. (2015) The future of electric vehicles: prospects and impediments, WIREs Energy Environment 2015, 4:521–536. doi: 10.1002/wene.160.
  • 2. Ajanovic A. (2013) Renewable fuels – a comparative assessment from economic, energetic and ecological point-of-view up to 2050 in EU-countries. Renew Energy 2013, 60:733–738.
  • 3. Arslan O., Yıldız B., Karas O.E. (2015), Minimum cost path problem for Plug-in Hybrid Electric Vehicles, Transportation Research Part E 80 (2016) 123–141.
  • 4. Baumeister J., Weise J., Hirtz E., Höhne K., Hohe J. (2014), Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles, Mat.-wiss. u. Werkstofftech. 2014, 45, No. 12, DOI 10.1002/mawe.201400358.
  • 5. Braam Felix, Groß Arne, Mierau Michael, Kohrs Robert, Wittwer Christof, Coordinated charge management for battery electric vehicles, Comput Sci Res Dev (2017) 32:183–193 DOI 10.1007/s00450-016-0307-6.
  • 6. Cao X., Ishikawaa T. (2016), Optimum Design of a Regenerative Braking System for Electric Vehicles Based on Fuzzy Control Strategy, IEEJ Transactionc on Electrical and Electronic Engineering, IEEJ Trans 2016; 11(S1): S186–S187, DOI:10.1002/tee.22254.
  • 7. Deng Y., Li J., Li T., Zhang J., Yang F., Yuan C. (2017), Life cycle assessment of high capacity molybdenum disulfide lithiumion battery for electric vehicles, Energy 123 (2017) 77-88.
  • 8. Dusmez S, Khaligh A. (2012), A Novel Low Cost Integrated On-board Charger Topology for Electric Vehicles and Plug-in Hybrid Electric Ve Applied Power Electronics Conference and Exposition - APEC 2012, 2611 –2616.
  • 9. Einhorn M., Reoßler W., Conte F. V, Popp H., Fleig J. (2012), Charge balancing of serially connected lithium-ion battery cells in electric vehicles, Elektrotechnik & Informationstechnik (2012) 129/3: 167–173. DOI 10.1007/s00502-012-0097-x.
  • 10. Global EV Outlook IEA Report 2016
  • 11. Goldin E., Erickson L., Natarajan B., Brase G., Pahwa A. (2014), Solar Powered Charge Stations for Electric Vehicles, Environmental Progress & Sustainable Energy (Vol. 33, No. 4) DOI 10.1002/ep, 1298-1308.
  • 12. Lorf C., Martínez-Botas R., Howey D., Lytton L., Cussons B. (2013) Comparative analysis of the energy consumption and CO2 emissions of 40 electric, plug-in hybrid electric, hybrid electric and internal combustion engine vehicles, Transportation Research Part D 23 (2013) 12–19.
  • 13. Maggetto G., Van Mierl J. (2001), Electric vehicles, hybrid electric vehicles and fuel cell vehicles: state oft he art and perspectives, Ann. Chim. Sci. Mat, 2001, 26 (4), pp. 9-26.
  • 14. MacPherson N.D., Keoleian G.A., and Kelly J.C., (2017) Evaluation of a Regional Approach to Standards for Plug-in Battery Electric Vehicles in Future Light-Duty Vehicle Greenhouse Gas Regulations Journal of Industrial Ecology, Volume 19, Number 1, 2017: 10.1111/jiec.12170.
  • 15. Quak H., Nesterova N., van Rooijen T. (2015), Possibilities and barriers for using electric-powered vehicles in city logistics practice, Transportation Research Procedia 12 (2016) 157–169
  • 16. Rizeta C., Cruzb C., Vromantc M. (2015), The constraints of vehicle range and congestion for the use of electric vehicles for urban freight in France, Transportation Research Procedia 12 (2016) 500–507.
  • 17. Skytte K., Pizarro A. and Karlsson K. B. (2017) Use of electric vehicles or hydrogen in the Danish transport sector in 2050?, WIREs Energy Environ 2017, 6:e233. doi: 10.1002/wene.233.
  • 18. Sung W., Hwang D.S., Jeong B.J., Lee J., Kwon T. (2016), Electrochemical battery model and ist paramtere estymator for use ine a battery mamagment system in Plug-In hybrid electric vehicles, International Journal of Automotive Technology, Vol. 17, No. 3, pp. 493-508 (2016), DOI 10.1007/s12239-016-0051-8.
  • 19. Wang L., Lin A., Chen Y. (2010), Potential Impact of Recharging Plug-in Hybrid Electric Vehicles on Locational Marginal Prices, Naval Research Logistics DOI 10.1002/nav.
  • 20. Zhao J., Chen P., Ibrahim U., Wang J. (2016), Comparative stady and accomodation fo Biodiesel in diesel electric hybrid vehicles coupled wuth aftertreatments systems, Asian Journal of Control, Vol. 18, No. 1, pp. 3–15, January 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a00b240e-c401-4d27-a773-643a07b038e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.