PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The onset of convection in a rotating multicomponent fluid layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The onset of convective instability is analysed in a rotating multicomponent fluid layer in which density depends on n stratifying agents (one of them is heat) having different diffusivities. Two problems have been analysed mathematically. In the first problem, a sufficient condition is derived for the validity of the principle of the exchange of stabilities. Further, when the complement of this condition holds good, oscillatory motions of neutral or growing amplitude can exist, and thus it is important to derive upper bounds for the complex growth rate of such motions when at least one of the bounding surfaces is rigid so that exact solutions of the problem in closed form are not obtainable. Thus, as the second problem, bounds for the complex growth rates are also obtained. Above results are uniformly valid for quite general nature of the bounding surfaces.
Rocznik
Strony
477--488
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Department of Mathematics and Statistics, Himachal Pradesh University, Shimla, India
autor
  • Department of Mathematics and Statistics, Himachal Pradesh University, Shimla, India
autor
  • Department of Mathematics and Statistics, Himachal Pradesh University, Shimla, India
autor
  • Department of Mathematics and Statistics, Himachal Pradesh University, Shimla, India
Bibliografia
  • 1. Banerjee M.B., Katoch D.C., Dube G.S., Banerjee K., 1981, Bounds for growth rate of perturbation in thermohaline convection, Proceedings of the Royal Society of London, A, 378, 301-304
  • 2. Banerjee M.B., Shandil R.G., Lal P., Kanwar V., 1995, A mathematical theorem in rotatory thermohaline convection, Journal of Mathematics Analysis and Applied, 189, 351-361
  • 3. Brandt A., Fernando H.J.S., 1996, Double diffusive convection, American Geophysical Union, Washington, DC
  • 4. Griffiths R.W., 1979a, A note on the formation of salt finger and diffusive interfaces in three component systems, International Journal of Heat and Mass Transfer, 22, 1687-1693
  • 5. Griffiths R.W., 1979b, The influence of a third diffusing component upon the onset of convection, Journal of Fluid Mechanics, 92, 659-670
  • 6. Gupta J.R., Sood S.K., Bhardwaj U.D., 1986, On the characterization of non-oscillatory motions in a rotatory hydromagnetic thermohaline convection, Indian Journal of Pure and Applied Mathematics, 17, 1, 100-107
  • 7. Gupta J.R., Sood S.K., Shandil R.G., Banerjee M.B., Banerjee K., 1983, Bounds for the growth of a perturbation in some double-diffusive convection problems, Journal of Australian Mathematics Society, Ser. B, 25, 276-285
  • 8. Kellner M., Tilgner A., 2014, Transition to finger convection in double diffusive convection, Physics of Fluids, 26, 094103
  • 9. Lopez A.R., Romero L.A., Pearlstein A.J., 1990, Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer, Physics of Fluids A, 2, 6, 897-902
  • 10. Nield D.A., Kuznetsov A.V., 2011, The onset of double-diffusive convection in a nano fluid layer, International Journal Heat Fluid Flow, 32, 4, 771-776
  • 11. Pearlstein A.J., Harris R.M., Terrones G., 1989, The onset of convective instability in a triply diffusive fluid layer, Journal of Fluid Mechanics, 202, 443-465
  • 12. Pellew A., Southwell R.V., 1940, On the maintained convective motion in a fluid heated from below, Proceedings of the Royal Society of London, A, 176, 312-343
  • 13. Poulikakos D., 1985, The effect of a third diffusing component on the onset of convection in a horizontal porous layer, Physics of Fluids, 28, 10, 3172-3174
  • 14. Prakash J., Bala R., Vaid K., 2014a, On the characterization of nonoscillatory motions in triply diffusive convection, International Journal of Fluid Mechanics Research, 41, 5, 409-416
  • 15. Prakash J., Bala R., Vaid K., 2014b, On the principle of the exchange of stabilities in rotatory triply diffusive convection, Proceeding National Academy Science, Physical Sciences, India, 84, 3, 433-439
  • 16. Prakash J., Bala R., Vaid K., 2014c , Upper limits to the complex growth rates in triply diffusive Convection, Proceeding Indian National Science Academy, 80, 1, 115-122
  • 17. Prakash J., Bala R., Vaid K., 2015, On arresting the complex growth rates in Rotatory Triply Diffusive convection, communicated for publication
  • 18. Radko T., 2013, Double-Diffusive Convection, Cambridge university Press
  • 19. Rionero S., 2013a, Multicomponent diffusive-convective fluid motions in porous layers ultimately boundedness, absence of subcritical instabilities, and global nonlinear stability for any number of salts, Physics of Fluids, 25, 054104, 1-23
  • 20. Rionero S., 2013b, Triple diffusive convection in porous media, Acta Mechanics, 224, 447-458
  • 21. Rionero S., 2014, Onset of convection in rotating porous layers via a new approach, Discrete and Continuous Dynamical Systems, Ser. B, 19, 7, 2279-2296
  • 22. Ryzhkov I.I., 2013, Long-wave instability of a plane multicomponent mixture layer with the soret effect, Fluid Dynamics, 4, 48, 477-490
  • 23. Ryzhkov I.I., Shevtsova V.M., 2007, On thermal diffusion and convection in multicomponent mixtures with application to the thermogravitational column, Physics of Fluids, 19, 027101, 1-17
  • 24. Ryzhkov I.I., Shevtsova V.M., 2009, Long wave instability of a multicomponent fluid layer with the soret effect, Physics of Fluids, 21, 014102, 1-14
  • 25. Schmitt R.W., 2011, Thermohaline convection at density ratios below one: A new regime for salt fingers, Journal of Marine Research, 69, 779-795
  • 26. Schultz M.H., 1973, Spline Analysis, Prentice-Hall Inc. Englewood Cliffs NJ
  • 27. Sekar R., Raju K., Vasanthakumari R., 2013, A linear analytical study of Soret-driven Ferro thermohaline convection in an anisotropic porous medium, Journal of Magnetism and Magnetic Materials, 331, 122-128
  • 28. Shivakumara I.S., Naveen Kumar S.B., 2014, Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer, International Journal of Heat and Mass Transfer, 68, 542-553
  • 29. Terrones G., 1993, Cross-diffusion effects on the stability criteria in a triply diffusive system, Physics of Fluids A, 5, 9, 2172-2182
  • 30. Terrones G., Pearlstein A.J., 1989, The onset of convection in a multicomponent fluid layer, Physics of Fluids A, 1, 5, 845-853
  • 31. Turner J.S., 1973, Buoyancy Effects in Fluids, Cambridge University Press
  • 32. Turner J.S., 1974, Double diffusive phenomenon, Annual Review of Fluid Mechanics, 6, 37-56
  • 33. Turner J.S., 1985, Multicomponent convection, Annual Review of Fluid Mechanics, 17, 11-44
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a007d57c-7ffb-4368-a395-d1c8420354d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.