PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D material infrared and terahertz detectors : status and outlook

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors. Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data. At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.
Rocznik
Strony
107--154
Opis fizyczny
Bibliogr. 171 poz., tab., rys., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Rogalski, A. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics11, 314 (2019).
  • [2] Iwert,O. &Delabrea, B.The challenge of highly curved monolithic imaging detectors. Proc. SPIE7742,774227-1-9 (2010).
  • [3] Jeong, K.-H. Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science (80-. ).312, 557–561 (2006).
  • [4] Song, Y. M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K.-J., Liu, Z., Park, H., Lu, C., Kim, R. H., Li, R., Crozier,K. B., Huang, Y.& Rogers, J. A.Digital cameras with designs inspired by the arthropod eye. Nature497, 95–99 (2013).
  • [5] Tang, X., Ackerman, M. M. & Guyot-Sionnest, P. Colloidal quantum dots based infrared electronic eyes for multispectral imaging. Proc. SPIE 11088, 1108803-1-7 (2019).
  • [6] Lu, Q., Liu, W. & Wang, X. 2‐D material‐based photodetectors on in substrates flexible Optoelectronics:Flexible Inorganic Materials and Applications(eds. Ma, Z. &Liu, D.) 117–142 (Wiley‐VCH Verlag, 2019).
  • [7] International Roadmap for Devices and SystemsTM. 2018 Update. More Moore.https://irds.ieee.org/images/files/pdf/2018/2018IRDS_MM.pdf
  • [8] Briggs, N., Subramanian, S., Lin, Z., Li, X., Zhang, X., Zhang, K., Xia, K., Geohegan, D., Wallace, R., Chen, L.-Q., Terrones,M., Ebrahimi, A., Das, S., Redwing, J., Hinkle, C., Momeni, K., vanDuin, A., Crespi, V., Kar, S. & Robinson, J.A. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019).
  • [9] Bonaccorso, F., Sun, Z., Hasan, T. &Ferrari, A.C. Graphene photonics and optoelectronics. Nat.Photonics4, 611–622 (2010).
  • [10] Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J.-B. &Zhu, H.Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev.4, 021306-1-31 (2017).
  • [11] Xia, F., Mueller, T., Lin, Y.M., Valdes-Garcia, A. &Avouris, P. Ultrafast graphene photodetector. Nat.Nanotechnol.4, 839–843 (2009).
  • [12] Wang, G., Zhang, Y., You, C., Liu, B., Yang, Y., Li, H., Cui, A., Liu, D. &Yan, H. Two dimensional materials based photodetectors. Infrared Phys. Technol. 88, 149–173 (2018).
  • [13] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Özyilmaz, B., Ahn, J.-H., Hong, B.H. &Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat.Nanotechnol.4, 574–578 (2010).
  • [14] Akinwande, D., Petrone, N. &Hone, J. Two-dimensional flexible nanoelectronics. Nat.Commun.5, 5678 (2014).
  • [15] Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F. &Zhang, X. A graphene-based broadband optical modulator. Nature 474, 64-67 (2011).
  • [16] Grigorenko, A. N., Polini, M. &Novoselov, K. S. Graphene plasmonics. Nat.Photonics 6, 749–758 (2012).
  • [17] Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M. &Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).
  • [18] Rogalski, A. Kopytko, M. & Martyniuk. P. Two dimensional infrared and terahertz detectors:Outlook and status.Appl. Phys. Rev. 6, 021316 (2019).
  • [19] Rogalski, A., 2D Materials for Infrared and Terahertz Detectors.(CRC Press, Boca Raton, 2020).
  • [20] Novoselov, K. S., Geim,A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. &Firsov, A. A. Electric field effect in atomically thin carbon films.Science 306, 666–669 (2004).
  • [21] Novoselov, K. S., Geim,A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V. &Firsov, A.A.Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
  • [22] Geim A. K. &Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
  • [23] Xia, F., Yan, H. & Avouris, P. The interaction of lightand graphene: Basic, devices, and applications. Proc. IEEE 101, 1717-1731 (2013).
  • [24] Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. &Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206-209 (2008).
  • [25] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T. Peres, N. M. R. & Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 320, 1308(2008).
  • [26] Low T. &Avouris, P. Graphene plasmonic for terahertz to mid-infrared applications. ACS Nano 8(2), 1086-1001, 2014.
  • [27] Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation ofl ayered materials. Science 340, 1226419 (2013).
  • [28] Zhang, B., Liu, J., Wang, C., Yang, K., Lee, C., Zhang, H. & He J. Recent progress in 2D material‐based saturable absorbers for all solid‐state pulsed bulk lasers. Laser Photonics Rev.14, 1900240 (2020).
  • [29] Wang, J., Fang, H., Wang, X., Chen, X., Lu, W. & Hu, W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017).
  • [30] Wang, X., Sun, Y. &Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).
  • [31] Buscema, M., Islan, J. O., Groenendijk, D. J., Blanter, S. I., Steele, G. A.,van der Zant, H. S. J. &Castellanos-Gomez, A.Photocurrent generation with two-dimensional van der Waals semiconductor. Chem. Soc. Rev. 44, 3691-3718 (2015).
  • [32] Long, M., Wang, P., Fang, H. &Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2018).
  • [33] Wang, F., Wang, Z., Yin, L., Cheng, R., Wang, J., Wen,Y., Shifa, T. A., Wang, F., Zhang, Y., Zhan, X. & He, J. 2D library beyond graphene and transition metaldichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47, 6296-6341 (2018).
  • [34] Liu, T., Tong, L., Huang, X. &Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B28, 017302-1-19 (2019).
  • [35] Cheng, J., Wang, C., Zou, X. &Liao, L. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 7, 1800441 (2019).
  • [36] Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., Kim, Y.-J., Gorbachev, R. V., Georgiou, T., Morozov, S. V., Grigorenko, A. N., Geim, A. K., Casiraghi, C., Castro Neto, A. H. &Novoselov, K. S. Strong light-matterinteractions in heterostructures of atomically thin films. Science 340, 1311-1313 (2013).
  • [37] Dai, Z., Liu, L. &Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).
  • [38] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V.&Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 1–15 (2017).
  • [39] Pi, L., Li, L., Liu, K., Zhang, Q., Li, H. &Zhai, T. Recent progress on 2D noble-transition-metaldichalcogenides. Adv. Funct. Mater. 29, 1904932 (2019).
  • [40] Yang, Z., Dou J. &Wang, M. Graphene, transition metal dichalcogenides, andperovskite photodetectors. in Two-dimensional Materials for Photodetector(Intech, 2018).
  • [41] Mark K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).
  • [42] Wang, P., Bao, Q. & Hu, W. Infrared photodetectors. in 2D Materials for Photonic and Optoelectronic Applications(eds. Bao, Q. &Hoh, H.Y.) 105-115 (Elsevier, Amsterdam, 2020).
  • [43] Zhang, W., Huang, Z., Zhang, W. &Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).
  • [44] Zhao, Y., Qiao, J., Yu, Z., Yu, P., Xu, K., Lau, S. P., Zhou, W., Liu, Z., Wang, X., Ji, W.&Chai, Y. High-electron-mobility and air-stable 2D layered PtSe2FETs. Adv. Mater. 29, 1604230 (2017).
  • [45] Habib, M. R., Chen, W., Yin, W.-Y., Su, H. &Xu, M.Simulation of transition metal dichalcogenides, in Two Dimensional Transition Metal Dichalcogenides. Synthesis, Properties, and Applications(eds. Arul, N. S. &Nithya, V. D.) 135-172 (Springer, Singapore, 2019).
  • [46] Yu, X., Yu, P., Wu, D., Singh, B., Zeng, Q., Lin, H., Zhou, W., Lin, J., Suenaga, K., Liu, Z. &Wang, Q. J. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018).
  • [47] Zeng, L.-H., Wu, D., Lin, S.-H., Xie, C., Yuan, H.-Y, Lu, W., Lau, S.P., Chai, Y., Luo, L.-B., Li, Z.-J. &Tsang, Y.H. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29, 1806878 (2019).
  • [48] Bridgman, P. W. Two new modificationsof phosphorus. J. Am. Chem. Soc. 36,1344-1363 (1914).
  • [49] Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H. &Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372-377 (2014).
  • [50] Ling, X., Wang, H., Huang, S., Xia, F. &Dresselhaus, M. S. The renaissance of black phosphorus. PNAS112, 4523-4530 (2015).
  • [51] Akahama, Y., Endo, S. &Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 2148-2155 (1983).
  • [52] Tran, V., Soklaski, R., Liang, Y. &Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B89, 235319 (2014).
  • [53] Das, S., Zhang, W., Demarteau, M., Hoffmann,A., Dubey,M. &Roelofs, A, Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).
  • [54] Liu, B., Köpf, M., Abbas, A. N., Wang, X., Guo, Q., Jia, Y., Xia, F., Weihrich, R., Bachhuber, F., Pielnhofer, F., Wang, H., Dhall, R., Cronin, S. B., Ge, M., Fang, X., Nilges, T. &Zhou,C.Black arsenic–phosphorus: layered anisotropic infraredsemiconductors with highly tunable compositionsand properties.Adv. Mater. 27, 4423–4429 (2015).
  • [55] Wood, J. D., Wells, S. A., Jariwala, D., Chen, K. S., Cho, E., Sangwan, V. K, Liu, X., Lauhon, L. J., Marks, T. J. &Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).
  • [56] Island, J. O., Steele, G. A., van der Zant, H. S. J. &Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2,011002 (2015).
  • [57] Razeghi, M. & Rogalski, A.Photoresistors in Wiley Encyclopedia of Electrical and Electronics Engineering (edWebster, J.G.)Vol. 16, 377–387(Wiley, 1999).
  • [58] Rogalski, A. Infrared and Terahertz Detectors, third edition. (CRC Press, Boca Raton, 2019).
  • [59] Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, F. P., Gatti,F. &Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol.7, 363–368 (2012).
  • [60] Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari,A. C., Vitiello M. S. &Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
  • [61] Fang H. &Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017).
  • [62] Wang, P., Xia, H., Li, Q., Wang, F., Zhang, L., Li, T., Martyniuk, P., Rogalski, A. &Hu, W. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small 46, 1904396 (2019).
  • [63] Mott N. &Jones, H. The Theory of the Properties of Metals and Alloys.(The Clarendon Press, 1936).
  • [64] Nourbakhsh, A., Yu, L., Lin, Y., Hempel, M., Shiue, R.-J.,Englund, D. &Palacios, T. Heterogeneous integration of 2D materials and devices on a Si platfor. in Beyond-CMOS Technologies for Next Generation Computer Design(eds. Topaloglu R. O. &Wong, H.-S. P.) 43–84 (Springer, 2019).
  • [65] Du, X., Prober, D. E., Vora, H. &Mckitterick, Ch.B. Graphene-based bolometers. Graphene & 2D Mater. 1, 1–22 (2014).
  • [66] Pop, E., Varshney, V. &Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin 37, 1273–1281 (2012).
  • [67] Rogalski, A. & Sizov, F. Terahertz detectors and focal plane arrays. Opto−Electron. Rev.19,346–404(2011).
  • [68] Dyakonov M.&Shur, M. S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current. Phys. Rev. Lett. 71, 2465–2468 (1993).
  • [69] Dyakonov M. &Shur, M. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1646 (1996).
  • [70] Shur M. &Ryzhii, V. Plasma wave electronics.Int. J. High Speed Electr. Syst. 13, 575–600 (2003).
  • [71] Wang, H.-X., Wang, Q.,Zhou, K.-G. &Zhang,H.-L.Graphene in light: Design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9(8), 1266–1283 (2013).
  • [72] Houssa, M., Dimoulas, A. &Molle, A. 2D Materials for Nanoelectronics. (CRC Press, Boca Raton, 2016)
  • [73] Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 52661–3 (2018).
  • [74] Avouris, P., Heinz, T. F. &Low, T. 2D Materials:Properties and Devices.(Cambridge University Press, Cambridge, 2017).
  • [75] Zhang, Y., Liu, T., Meng, B., Li, X., Liang, G., Hu, X. &Wang, Q.J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).
  • [76] Chronopoulos, D., Bakandritsos, A., Pykal, M., Zboril, R. &Otyepka, M. Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 9, 60–70 (2017).
  • [77] Sun, Z., Liu, Z., Li, J., Tai, G., Lau, S.‐ P. &Yan, F. Infrared photodetectors based on CVD-growngraphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883(2012).
  • [78] Guo, W., Xu, S., Wu, Z., Wang, N., Loy, M. M. T. &Du, S. Oxygen-assisted charge transfer between ZnO quantum dotsand graphene. Small 9, 3031–3036 (2013).
  • [79] Nikitskiy, I., Goossens, S., Kufer, D., Lasanta, T., Navickaite, G., Koppens, F. H. &Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiodewith a graphene phototransistor. Nat. Commun. 7, 11954 (2016).
  • [80] Yu, X., Li, Y., Hu, X., Zhang, D., Tao, Y., Liu, Z., He, Y., Haque, M. A., Liu, Z., Wu, T. & Wang, Q. J. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 9, 4299 (2018).
  • [81] Du, S., Lu, W., Ali, A., Zhao, P., Shehzad, K., Guo, H., Ma, L., Liu, X., Pi, X., Wang, P., Fang, H., Xu, Z., Gao, C., Dan, Y., Tan, P., Wang, H., Lin, C.-T., Yang, J., Dong, S., Cheng, Z., Li, E., Yin, W., Luo, J., Yu, B., Hasan, T., Xu, Y., Hu, W. &Duan, X. A broadband fluorographene photodetector. Adv. Mater. 29, 1700463 (2017).
  • [82] Ryzhii, V., Otsuji, T., Ryzhii, M. &Shur, M. S. Double graphene-layer plasma resonances terahertz detector. J. Phys. D: Appl. Phys. 45, 302001 (6pp) (2012).
  • [83] Liu, C. H., Chang, Y. C., Norris, T. B. &Zhong, Z.H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).
  • [84] Gan, X., Shiue, R.-J., Yuanda, G., Meric, I., Heinz, T.F., Shepard, K., Hone, J., AssefaS. &Englund,D. Chip-integrated ultrafast graphene photodetector with highresponsivity. Nat. Photonics 7, 883–887 (2013).
  • [85] Pospischil, A., Humer, M., Furchi, M. M., Bachmann, D., Guider, R., Fromherz, T. &Mueller, T. CMOS-compatible graphene photodetector covering alloptical communication bands. Nat. Photonics 7, 892–896 (2013).
  • [86] Wang, X. M., Cheng, Z. Z., Xu, K., Tsang, H. K. &Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7,888–891 (2013).
  • [87] Schall, D., Neumaier, D., Mohsin, M., Chmielak, B., Bolten, J., Porschatis, C., Prinzen, A., Matheisen, C., Kuebart, W., Junginger, B., Templ, W., Giesecke, A. L. &Kurz, H. 50 GBit/s photodetectors based on wafer-scale graphene forintegrated silicon photonic communication systems. ACS Photonics 1, 781–784(2014).
  • [88] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., Geim, A. K., Ferrari, A. C. &Novoselov,K. S.Strong plasmonic enhancement of photovoltage in graphene.Nat. Commun. 2, 458 (2011).
  • [89] Liu, Y., Cheng, R., Liao, L., Zhou, H., Bai, J., Liu, G., Liu, L., Huang, Y. &Duan, X. Plasmon resonance enhanced multicolour photodetection bygraphene. Nat. Commun. 2, 579 (2011).
  • [90] Bandurin, D. A., Svintsov, D., Gayduchenko, I., Xu, S. G., Principi, A., Moskotin, M., Tretyakov, I., Yagodkin, D., Zhukov, S., Taniguchi, T., Watanabe, K., Grigorieva, I. V., Polini, M., Goltsman, G. N., Geim, A.K. &Fedorov, G. Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392–1–8 (2018).
  • [91] Engel, M., Steiner, M., Lombardo, A., Ferrari, A. C., v. Löhneysen, H., Avouris, P. &Krupke, R. Light-matter interaction in a microcavity-controlled graphenetransistor. Nat. Commun. 3, 906 (2012).
  • [92] Gan, X., Mak, K. F., Gao, Y., You, Y., Hatami, F., Hone, J., Heinz, T. F. &Englund, D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012).
  • [93] Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A. M., Schrenk, W., Strasser, G. &Mueller, T. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).
  • [94] Freitag, M., Low, T., Zhu, W., Yan, H., Xia, F. &Avouris, P. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).
  • [95] Ogawa, S., Shimatani, M., Fukushima, S., Okuda, S. &Matsumoto, K. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths. Opt. Express 26(5), 5665–5674 (2018).
  • [96] Shiue, R.-J., Gan, X., Gao, Y., Li, L., Yao, X., Szep, A., Walker Jr., D., Hone, J. &Eglund, D. Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl Phys. Lett. 103, 241109 (2013).
  • [97] Fang, Z., Liu, Z., Wang, Y., Ajayan, P.M., Nordlander, P. &Halas, N. J. Graphene–antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).
  • [98] Yao, Y., Shankar, R., Rauter, P., Song, Y., Kong, J., Loncar, M. &Capasso, F. High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection. Nano Lett. 14, 3749–3754(2014).
  • [99] Chakraborty, C., Beams, R., Goodfellow, K. M., Wicks, G. W., Novotny, L. &Vamivakas, A. N. Optical antenna enhanced graphene photodetector. Appl. Phys. Lett. 105, 241114 (2014).
  • [100] Echtermeyer, T. J., Milana, S., Sassi, U., Eiden, A., Wu, M., Lidorikis, E. &Ferrari, A. C. Surface plasmon polariton graphene photodetectors. Nano Lett. 16, 8–20 (2015).
  • [101] Liu, T., Tong, L., Huang, X. &Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B28, 017302–1–19 (2019).
  • [102] Chen, Z., Li, X., Wang, J., Tao, L., Long, M., Liang, S.-J., Ang, L.K., Shu, C., Tsang, H. K. &Xu, J.-B. Synergistic effects of plasmonics and electrontrapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano11, 430–437 (2017).
  • [103] Cakmakyapan, S., Lu, P. K., Navabi, A. & Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 7, 20 (2018).
  • [104] Hsu, A. L., Herring, P.K., Gabor,N. M., Ha, S., Shin, Y. C., Song, Y., Chin, M., Dubey, M., Chandrakasan, A. P., Kong, J., Jarillo-Herrero, P. & Palacios, T. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 7211–7216 (2015).
  • [105] Yan, J., Kim, M.-H., Elle, J. A., Sushkov, A. B., Jenkins, G. S., Milchberg, H. M., Fuhrer, M. S. &Drew, H. D. Dual-gated bilayer graphene hot electron bolometer. Nat Nanotechnol. 7(7), 472–478, 2012.
  • [106] Sassi, U., Parret, R., Nanot, S., Bruna, M., Borini,S., De Fazio, D., Zhao, Z., Lidorikis, E., Koppens,F. H. L., Ferrar, A.,C. &Colli, A. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 80,1431 (2017).
  • [107] El Fatimy, A.,Myers-Ward, R. L., Boyd, A. K., Daniels, K. M., Gaskill, D. K. & Barbara, P. Epitaxial graphene quantum dots for high-performance THz bolometers. Nat. Nanotechnol.11, 335–338 (2016).
  • [108] El Fatimy, A., Nath, A., Kong, B. D., Boyd, A. K., Myers-Ward, R. L., Daniels, K. M., Jadidi, M. M., Murphy, T. E., Gaskill, D.K. &Barbara, P. Ultra-broadband photodetectors based on epitaxial graphene quantum dots. Nanophotonics 7(4), 735–740(2018).
  • [109] Blaikie, A., Miller, D. &Alemán, B. J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun.10:4726 (2019).
  • [110] Wang, Y., Wu, W. &Zhao, Z. Recent progress and remaining challenges of 2D material-based terahertz detectors. Infrared Phys. Technol. 102, 103024 (2019).
  • [111] Viti, L., Hu, J., Coquillat, D., Politano, A., Knap, W. &Vitiello, M. S. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci. Rep. 6:20474 (2016).
  • [112] Miao, W., Gao, H., Wang, Z., Zhang, W., Ren, Y., Zhou, K. M., Shi, S. C., Yu, C., He, Z. Z., Liu, Q. B. &Feng, Z.H. A graphene-based terahertz hot electron bolometer with Johnson noise readout. J. Low Temp. Phys. 193(3–4), 387–392 (2018).
  • [113] Cai, X., Sushkov, A. B., Suess, R. J., Jadidi, M. M., Jenkins, G. S., Nyakiti, L. O., Myers-Ward, R. L., Li, S., Yan, J., Gaskill, D. K., Murphy, T. E., Drew, H. D. &Fuhrer, M. S. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9(10) 814–819 (2014).
  • [114] Tong, J., Muthee, M., Chen, S. Y., Yngvesson, S. K. &Yan, J. Antenna enhanced graphene THz emitter and detector. Nano Lett. 15(8), 5295–5301 (2015).
  • [115] Viti, L., Hu,J., Coquillat, D., Knap, W., Tredicucci,A., Politano, A. &Vitiello,M. S. Black phosphorus terahertz photodetectors.Adv. Mater. 27, 5567–5572 (2015).
  • [116] Vicarelli, L., Vitiello, M. S., Coquillat, D., Lombardo, A., Ferrari, A. C., Knap, W., Polini, M., Pellegrini, V. &Tredicucci, A. Graphene field-effect transistors as roomtemperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012).
  • [117] Zak, A., Andersson, M. A., Bauer, M., Matukas, J., Lisauskas, A., Roskos, H. G. &Stake, J. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett. 14(10), 5834–5838 (2014).
  • [118] Spirito, D., Coquillat, D., De Bonis, S. L., Lombardo, A., Bruna, M., Ferrari, A. C., Pellegrini, V., Tredicucci, A., Knap, W. &Vitiello, M. S. High performance bilayer graphene terahertz detectors. Appl. Phys. Lett. 104(6), 061111 (2014).
  • [119] Qin, H., Sun, J., Liang, S., Li, X., Yang, X., He, Z., Yu, C. &Feng, Z. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor. Carbon116, 760–765 (2017).
  • [120] Bianco, F., Perenzoni, D., Convertino, D., De Bonis, S. L., Spirito, D., Perenzoni, M., Coletti, C., Vitiello, M. S. &Tredicucci, A. Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide”, Appl. Phys. Lett. 10(13), 131104 (2015).
  • [121] Bandurin, D. A., Gayduchenko, I., Cao, Y., Moskotin, M., Principi, A., Grigorieva, I. V., Goltsman, G., Fedorov, G. &Svintsov, D. Dual origin of room temperature sub-terahertz photoresponse in graphenefield effect transistors. Appl. Phys. Lett. 112(14), 141101 (2018).
  • [122] Wang, L., Liu, C., Chen, X., Zhou, J., Hu, W., Wang, X., Li, J., Tang, W., Yu, A., Wang, S.-W. &Lu, W. Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor. Adv. Funct. Mater. 27(7), 1604414 (2017).
  • [123] Liu, C., Wang, L., Chen, X., Zhou, J., Hu, W., Wang, X., Li, J., Huang, Z., Zhou, W., Tang, W., Xu, G., Wang, S.-W. &Lu, W. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection”, Carbon130, 233–240 (2018).
  • [124] Yadav, D., Tombet, S. B., Watanabe, T., Arnold, S., Ryzhii, V. &Otsuji, T. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures. 2D Mater. 3(4), 045009 (2016).
  • [125] Liu, C., Wang, L., Chen, X., Politano, A., Wei, D., Chen, G., Tang, W., Lu, W. &Tredicucci, A. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene. Adv. Optical Mater.1800836 (2018).
  • [126] Currie, M. Applications of graphene to photonics. (NRL/MR/5650-14-9550, 2014).
  • [127] Long, M., Gao, A., Wang, P., Xia, H., Ott, C., Pan, C., Fu, Y., Liu, E., Chen, X., Lu, W., Nilges, T., Xu, J., Wang,X., Hu, W. &Miao, F. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv.3, e1700589 (2017).
  • [128] VigoSystemCatalog.https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf
  • [129] Long, M., Wang, Y., Wang,P., Zhou,X., Xia, H., Luo,C., Huang, S., Zhang, G., Yan, H., Fan, Z., Wu, X., Chen, X., Lu,W. &Hu, W. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511–2519 (2019).
  • [130] Ye, L., Wang, P., Luo, W., Gong, F., Liao, L., Liu, T., Tong, L., Zang, J., Xu, J. &Hu, W. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2photogate vertical heterostructure. Nano Energy 37, 53–60 (2017)
  • [131] Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano11, 11724–11731 (2017).
  • [132] HOT MCT Detectors, http://www.teledynejudson.com/
  • [133] Guyot-Sionnest, P., Ackerman, M. M. & Tang, X. Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys.151, 060901 (2019).
  • [134] Konstantatos, G. & Sargent, E. H. Solution-processed quantum dot photodetectors. Proc. IEEE97, 1666–1683 (2009).
  • [135] Tennant, W.E., Lee, D., Zandian, M., Piquette, E. &Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, descibrd by ‘Rule 07’, a very convenient heuristic. J. Electron. Mater. 37, 1406–1410 (2008).
  • [136] Rogalski, A., Kopytko, M. and Martyniuk, P. Trends in performance limits of the HOT infrared photodetectors. to be published.
  • [137] Lee, D., Dreiske, P., Ellsworth, J., Cottier, R., Chen, A., Tallarico, S., Barr, H., Tcheou, H., Yulius, A., Carmody, M., Piquette, E., Zandian, M. & Dougla, S. Performance of MWIR and LWIR fully-depleted HgCdTe FPAs. (Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials, 189–190, 2019).
  • [138] Lee, A. W. M., Williams, B. S., Kumar, S., Hu, Q. &Reno, J. L. Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array. IEEE Photonics Technol. Lett. 18, 1415–1417 (2006).
  • [139] Oda, N. Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging. C. R. Physique 11, 496–509 (2010).
  • [140] Bolduc, M., Terroux, M,. Tremblay, B., Marchese, L., Savard, E., Doucet, M., Oulachgar, H.,Alain, C., Jerominek, H. &Bergeron, A. Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera. Proc. SPIE8023, 80230C-1-10 (2011).
  • [141] Nguyen, D.-T., Simoens, F., Ouvrier-Buffet, J.-L., Meilhan, J. &Coutaz, J.-L. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements. IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
  • [142] Goossens, S., Navickaite, G., Monasterio, C., Gupta, S., Piqueras,J. J., Pérez, R., Burwell, G., Nikitskiy, I., Lasanta, T., Galán, T., Puma, E., Centeno, A., Pesquera, A., Zurutuza, A., Konstantatos,G. &Koppens, F. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 11, 366–371 (2017).
  • [143] Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002).
  • [144] Piotrowski J. &Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1−xCdxTe. J. Appl. Phys. 80, 2542–2544 (1996).
  • [145] Yao, J., Shao, J., Wang, Y., Zhao, Z. &Yang, G. Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 7, 12535–12541 (2015).
  • [146] Guo, Q., Pospischil, A., Bhuiyan, M., Jiang, H., Tian,H., Farmer,D., Deng, B., Li, C., Han,S.-J., Wang, H., Xia, Q., Ma, T.-P., Mueller, T. &Xia F. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).
  • [147] Bullock, J., Amani, M., Cho, J., Chen, Y.-Z., Ahn, G. H., Adinolfi, V., Shrestha, V. R., Gao, Y., Crozier, K. B., Chueh Y.-L. &Javey, A. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018).
  • [148] Tan, W.C., Huang, L., Ng, R. J., Wang, L., Hasan, D. M. N., Duffin, T. J., Kumar, K. S., Nijhuis, C. A., Lee, C. &Ang, K.-W. A black phosphorus carbide infrared phototransistor. Adv. Mater. 30, 1705039 (2018).
  • [149] Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 68, 100228 (2019).
  • [150] Oyedele, A. D., Yang, S., Liang, L., Puretzky, A. A., Wang, K., Zhang, J., Yu, P., Pudasaini, P. R., Ghosh, A. W., Liu, Z., Rouleau,C. M., Sumpter, B. G., Chisholm, M. F., Zhou, W., Rack, P. D., Geohegan, D. B.&Xiao, K.”PdSe2: Pentagonal two-dimensionallayers with high air stability for electronics”, J. Am. Chem. Soc. 139, 14090–14097 (2017).
  • [151] Mak, C.H., Lin, S., RogéeL. &Lau,S.P.Photoresponse of wafer-scale palladium diselenide films prepared by selenization method. J. Phys. D: Appl. Phys. 53065102(2020).
  • [152] Li, L., Wang, W., Chai, Y., Li, H., Tian, M. &Zhai, T. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 27, 1701011 (2017).
  • [153] Balandin, A. A.Low-frequency 1/f noise in graphenedevices. Nat. Nanotechnol. 8, 549–555 (2013).
  • [154] Viti, L., Hu, J., Coquillat, D,. Politano, A., Consejo, C., Knap, W. &Vitiello,M. S.Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv. Mater. 28, 7390–7396 (2016).
  • [155] Viti, L., Politano, A. &Vitiello, M. S. Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges. APLMaterials 5, 035602 (2017).
  • [156] Hasan, M. Z. &Kane, C. L. Colloquium: Topological insulators. Rev. Mod.Phys. 82, 3045–3067 (2010).
  • [157] Qi, X.-L. &Zhang, S.-C. Topological insulators and superconductors. Rev.Mod. Phys. 83, 1057–1110 (2011)
  • [158] Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).
  • [159] Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z. &Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3and Sb2Te3with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).
  • [160] Fu, L., Kane, C. L. &Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
  • [161] Di Pietro, P., Ortolani, M., Limaj, O., Di Gaspare, A., Giliberti, V., Giorgianni, F., Brahlek, M., Bansal, N., Koirala, N., Oh, S., Calvani,P. &Lupi, S. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 8, 556–560 (2013).
  • [162] Tian, W., Yu, W., Shi, J. &Wang, Y. The property, preparation and application of topological insulators: A review. Materials10, 814 (2017).
  • [163] Viti, L., Coquillat, D., Politano, A., Kokh, K. A., Aliev, Z. S., Babanly, M. B., Tereshchenko, O. E., Knap, W., Chulkov, E. V. &Vitiello, M. S. Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 16, 80–87 (2016).
  • [164] Tang, W., Politano, A., Guo, C., Guo, W., Liu, C., Wang,L., Chen, X. &Lu, W. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator. Adv. Funct. Mater.28, 1801786 (2018).
  • [165] Kuriakose, S., Ahmed, T., Balendhran, S., Bansal, V., Sriram, S., Bhaskaran, M. &Walia, S. Black phosphorus: ambient degradation and strategies for protection. 2D Mater. 5(3), 032001, 1–10 (2018).
  • [166] Chen, D.-R., Hofmann, M., Yao, H.-M., Chiu, S.-K., Chen, S.-H., Luo, Y.-R., Hsu,C.-C. & Hsieh, Y.-P. Lateral two-dimensional material heterojunction photodetectorswith ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces 11, 6384–6388 (2019).
  • [167] Wang, M. &YangE.-H. THz applications of 2D materials: Graphene and beyond.Nano-Struct. Nano-Objects 15, 107–113 (2018).
  • [168] Wang, P., Liu, S., Luo, W., Fang, H., Gong, F., Guo, N., Chen, Z.-G., Zou, J., Huang, Y., Zhou, X., Wang, J., Chen, X., Lu, W., Xiu, F. &Hu, W. Arrayed van der Waals broadband detectors for dual-banddetection. Adv. Mater. 29, 1604439 (2017).
  • [169] Seeing Photons: Progress and Limits of Visible and Infared Sensor Arrays, Committee on Developments in DetectorTechnologies; National Research Council,2010, http://www.nap.edu/catalog/12896.html
  • [170] Rogalski, A.History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012).
  • [171] Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 36, 342–473 (2012).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
2. This work was supported by the funds granted to the Faculty of Advanced Technologies and Chemistry, Military University of Technology, within the subsidy for maintaining research potential in 2020, grant no. UGB763.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a004ee9c-29d1-4da6-b34b-10051f7fb252
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.