PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of Material Extrusion process parameters on the porosity and mechanical properties of PLA products for medical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study addresses the growing need for personalized medicine and cost-effective manufacturing by investigating additive manufacturing (AM). It employs the Design of Experiments (DOE) to explore how fused filament fabrication (FFF) parameters affect porosity and mechanical properties of medical-grade polylactide (PLA) samples.
Rocznik
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] ADEL I.M., ELMELIGY M.F., ELKASABGY N.A.: Conventional and recent trends of scaffolds fabrication: A superior mode for tissue engineering. Pharmaceutics, 2022, 14, 306.
  • [2] BARAN E.H., YILDIRIM ERBIL H.: Surface modification of 3d printed pla objects by fused deposition modeling: A review. Colloids and Interfaces, 2019, 3, 43.
  • [3] BAYART M., DUBUS M., CHARLON S., KERDJOUDJ H., BALEINE N., BENALI S., RAQUEZ J.M., SOULESTIN J.: Pellet-based fused filament fabrication (FFF)-derived process for the development of polylactic acid/hydroxyapatite scaffolds dedicated to bone regeneration. Materials (Basel)., 2022, 15, 5615.
  • [4] BODNÁROVÁ S., GROMOŠOVÁ S., HUDÁK R., ROSOCHA J., ŽIVČÁK J., PLŠÍKOVÁ J., VOJTKO M., TÓTH T., HARVANOVÁ D., IŽARIKOVÁ G., DANIŠOVIČ Ľ.: 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study. Acta Bioeng. Biomech. Orig. Pap., 2019, 21.
  • [5] BOSCHETTO A., BOTTINI L., VENIALI F.: Integration of FDM surface quality modeling with process design. Addit. Manuf., 2016, 12, Part B, 334 344.
  • [6] BRACKETT J., CAUTHEN D., CONDON J., SMITH T., GALLEGO N., KUNC V., DUTY C.: Characterizing the influence of print parameters on porosity and resulting density. In: Solid Freeform Fabrication Symposium 2019. 2019
  • [7] CHACÓN J.M., CAMINERO M.A., GARCÍA-PLAZA E., NÚÑEZ P.J.: Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des., 2017, 124, 143 157.
  • [8] DEY A., EAGLE I.N.R., YODO N.: A review on filament materials for fused filament fabrication. J. Manuf. Mater. Process. 2021, Vol. 5, Page 69, 2021, 5, 69.
  • [9] DONATE R., MONZÓN M., ALEMÁN-DOMÍNGUEZ M.E.: Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers, 2020, 20, 571 599.
  • [10] DRUMMER D., CIFUENTES-CUÉLLAR S., RIETZEL D.: Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp. J., 2012, 18, 500 507.
  • [11] DUPUY P.M., AUSTIN P., DELANEY G.W., SCHWARZ M.P.: Pore scale definition and computation from tomography data. Comput. Phys. Commun., 2011, 182, 2249 2258.
  • [12] FICO D., RIZZO D., CASCIARO R., CORCIONE C.E.: A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials. Polymers (Basel)., 2022, 14, 465.
  • [13] GAJDOS I., SLOTA J.: Influence of printing conditions on structure in FDM prototypes. Tech. Vjesn., 2013, 20, 231 236.
  • [14] GONABADI H., YADAV A., BULL S.J.: The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. Int. J. Adv. Manuf. Technol., 2020, 111, 695 709.
  • [15] GRÉMARE A., GUDURIC V., BAREILLE R., HEROGUEZ V., LATOUR S., L’HEUREUX N., FRICAIN J.C., CATROS S., LE NIHOUANNEN D.: Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A, 2018, 106, 887 894.
  • [16] IBRAHIM M., HAFSA M.N.: Studies on rapid prototyping pattern using PLA material and FDM technique. Appl. Mech. Mater., 2014, 465 466, 1070 1074.
  • [17] KHOSRAVANI M.R., REINICKE T.: On the use of X-ray computed tomography in assessment of 3D-printed components. J. Nondestruct. Eval., 2020, 39.
  • [18] KRISHANI M., SHIN W.Y., SUHAIMI H., SAMBUDI N.S.: Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review. Gels , 2023, 9, 100.
  • [19] LIAO B., XU C., LI W., LU D., JIN Z.M.: Bionic mechanical design and SLM manufacture of porous Ti6Al4V scaffolds for load-bearing cancellous bone implants. Acta Bioeng. Biomech., 2021, 23, 97 107.
  • [20] MAJID S.N.A., ALKAHARI M.R., RAMLI F.R., MAIDIN S., FAI T.C., SUDIN M.N.: Influence of integrated pressing during Fused Filament Fabrication on tensile strength and porosity. J. Mech. Eng., 2017, SI 3, 185 197.
  • [21] MASSART D.L., VANDEGINSTE B.G.M., BUYDENS L.M.C., JONG S. De, LEWI P.J., SMEYERS-VERBEKE J.: Two-level factorial designs. In: Data Handling in Science and Technology,. 1998, 659 682.
  • [22] MOHAMED O.A., MASOOD S.H., BHOWMIK J.L.: Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement, 2016, 81, 174 196.
  • [23] MOHAMED O.A., MASOOD S.H., BHOWMIK J.L.: Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl. Math. Model., 2016, 40, 10052 10073.
  • [24] MOHAMMED A., ELSHAER A., SAREH P., ELSAYED M., HASSANIN H.: Additive manufacturing technologies for drug delivery applications. Int. J. Pharm., 2020, 580, 119245.
  • [25] NIEMCZYK-SOCZYNSKA B., ZASZCZYŃSKA A., ZABIELSKI K., SAJKIEWICZ P.: Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering. Materials (Basel)., 2021, 14, 6899.
  • [26] OLEJARCZYK M., GRUBER K., ZIÓŁKOWSKI G.: Review of Available Software for Path Control of Personal 3D Printers Toolheads. Tech. Issues, 2015, 3, 48 55.
  • [27] RANA D., ARULKUMAR S., VISHWAKARMA A., RAMALINGAM M.: Considerations on designing scaffold for tissue engineering. In: VISHWAKARMA A, SHARPE P, SHI S, RAMALINGAM M, editor(s). Stem Cell Biology and Tissue Engineering in Dental Sciences. Elsevier Inc., 2015, 133 148.
  • [28] REDDY R.D.P., SHARMA V.: Additive manufacturing in drug delivery applications: A review. Int. J. Pharm., 2020, 589, 119820.
  • [29] REINOSO M.R., CIVERA M., BURGIO V., BERGAMIN F., RUIZ O.G., PUGNO N.M., SURACE C.: 3d printing and testing of rose thorns or limpet teeth inspired anchor device for tendon tissue repair. Acta Bioeng. Biomech., 2021, 23, 63 74.
  • [30] SEARS F.: 3D print quality in the context of PLA color. MASSACHUSETTS Inst. Technol, 2016, 1 172.
  • [31] SINGH S., SINGH G., PRAKASH C., RAMAKRISHNA S.: Current status and future directions of fused filament fabrication. J. Manuf. Process., 2020, 55, 288 306.
  • [32] SUAMTE L., TIRKEY A., BARMAN J., JAYASEKHAR BABU P.: Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf., 2023, 1, 100011.
  • [33] SZYMCZYK-ZIÓŁKOWSKA P., ŁABOWSKA M.B., DETYNA J., MICHALAK I., GRUBER P.: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern. Biomed. Eng., 2020, 40, 624 638.
  • [34] TANIKELLA N.G., WITTBRODT B., PEARCE J.M.: Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit. Manuf., 2017, 15, 40 47.
  • [35] THAVORNYUTIKARN B., CHANTARAPANICH N., SITTHISERIPRATIP K., THOUAS G.A., CHEN Q.: Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog. Biomater., 2014, 3, 1 42.
  • [36] WOŹNA A.E., JUNKA A.F., SZYMCZYK P.E.: The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms. Acta Bioeng. Biomech. Orig. Pap., 2018, 20, 101 106.
  • [37] YADAV A., ROHRU P., BABBAR A., KUMAR R., RANJAN N., CHOHAN J.S., KUMAR R., GUPTA M.: Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf., 2022,
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a001a851-5a28-4d7f-b81a-40d4547de628
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.