PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active Transient Sound Radiation Control from a Smart Piezocomposite Hollow Cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The linear 3D piezoelasticity theory along with active damping control (ADC) strategy are applied for non-stationary vibroacoustic response suppression of a doubly fluid-loaded functionally graded piezolaminated (FGPM) composite hollow cylinder of infinite length under general time-varying excitations. The control gain parameters are identified and tuned using Genetic Algorithm (GA) with a multi-objective performance index that constrains the key elasto-acoustic system parameters and control voltage. The uncontrolled and controlled time response histories due to a pair of equal and opposite impulsive external point loads are calculated by means of Durbin’s numerical inverse Laplace transform algorithm. Numerical simulations demonstrate the superior (good) performance of the GA-optimized distributed active damping control system in effective attenuation of sound pressure transients radiated into the internal (external) acoustic space for two basic control configurations. Also, some interesting features of the transient fluid-structure interaction control problem are illustrated via proper 2D time domain images and animations of the 3D sound field. Limiting cases are considered and accuracy of the formulation is established with the aid of a commercial finite element package as well as comparisons with the current literature.
Rocznik
Strony
359--381
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
  • Acoustics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 Iran
autor
  • Acoustics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 Iran
Bibliografia
  • 1. ABAQUS, Analysis User’s Manual Version 6.11 Online Documentation.
  • 2. Alkhatib R., Golnaraghi M.F. (2003), Active structural vibration control: a review, The Shock and Vibration Digest, 35, 367–383.
  • 3. Babaev A.E., Babaev A.A. (2005), Generation of nonstationary waves by a thick-walled piezoceramic cylinder excited by electric signals, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 52, 518–524.
  • 4. Babaev A.E., Babaev A.A., Yanchevskiy I.V. (2010), Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder, Journal of the Acoustical Society of America, 127, 2282–2289.
  • 5. Balabaev S.M., Ivina N.F. (1999), Acoustic radiation of a cylindrical piezoceramic transducer with solid internal filling, Acoustical Physics, 45, 398–401.
  • 6. B´elanger P.R. (1995), Control Engineering: A Modern Approach, Oxford University Press, London.
  • 7. Bruch J.J.C., Sloss J.M., Adali S., Sadek I.S. (2000), Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams, Smart Materials and Structures, 9, 205–211.
  • 8. Cao X.T., Shi L., Zhang X., Jiang G. (2013), Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer, Smart Materials and Structures, 22, 964–1726.
  • 9. Cao Y., Sun H., An F., Li X. (2012), Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators, Journal of Sound and Vibration, 331, 2471–2484.
  • 10. Caresta M. (2011), Active control of sound radiated by a submarine in bending vibration, Journal of Sound and Vibration, 330, 615–24.
  • 11. Chen W.Q., Bian Z.G., Ding H.J. (2004), Three dimensional vibration analysis of fluid filled orthotropic FGM cylindrical shells, International Journal of Mechanical Science, 46, 159–171.
  • 12. Chen W.Q., Bian Z.G., Lv C.F., Ding H.J. (2004), 3D Free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid, International Journal of Solids and Structures, 41, 947–964.
  • 13. Chopra I. (2002), Review of state of art of smart structures and integrated systems, AIAA Journal, 11, 2145–2187.
  • 14. Clark R.L., Fuller C.R. (1994), Active control of structurally radiated sound from an enclosed finite cylinder, Journal of Intelligent Material Systems and Structures, 5, 379–391.
  • 15. Crawley E.F., de Luis J. (1987), Use of piezoelectric actuators as elements of intelligent structures, The American Institute of Aeronautics and Astronautics, 25, 1373–1385.
  • 16. Ding H.J., Chen W.Q., Gue Y.M., Yang Q.D. (1997), Free vibrations of piezoelectric cylindrical shells filled with compressible fluid, International Journal of Solids and Structures, 34, 2025–2034.
  • 17. Ding H.J., Chen W.Q. (2001), Three Dimensional Problems of Piezoelectricity, Nova Science Publishers, New York.
  • 18. Durbin F. (1973), Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate’s method, Computer Journal, 17, 371–376.
  • 19. Fan S.C., Li S.M., Yu G.Y. (2005), Dynamic fluidstructure interaction analysis using boundary finite element method-finite element method, Journal of Applied Mechanics, 72, 591–598.
  • 20. Gabbert U., Tzou H.S. (2001), Smart Structures and Structronic Systems, Kluwer, Dordrect.
  • 21. Genetic Algorithm Toolbox Available http://www.mathworks.com/products/global-optimization/ description4.html
  • 22. Hasheminejad S.M., Alaei-Varnosfaderani M. (2012), Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder, Journal of Intelligent Material Systems and Structures, 23, 775–790.
  • 23. Hasheminejad S.M., Alaei-Varnosfaderani M. (2013), Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder, Journal of Vibration and Control, doi:10.1177/1077546313483787.
  • 24. Hasheminejad S.M., Bahari A., Abbasion S. (2011), Modelling and simulation of acoustic pulse interaction with a fluid-filled hollow elastic sphere through numerical Laplace inversion, Applied Mathematical Modelling, 35, 22–49.
  • 25. Hasheminejad S.M., Kazemirad S. (2008), Dynamic viscoelastic effects on sound wave scattering by an eccentric compound circular cylinder, Journal of Sound and Vibration, 318, 506–526.
  • 26. Hasheminejad S.M., Keshavarzpour H. (2013), Active sound radiation control of a thick piezolaminated smart rectangular plate, Journal of Sound and Vibration, 332, 4798–4816.
  • 27. Hasheminejad S.M., Mohammadi M.M., Jarrahi M. (2013), Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles, Journal of Fluids and Structures, in press.
  • 28. Hasheminejad S.M., Mousavi-akbarzadeh H. (2012), Vibroacoustic response of an eccentric hollow cylinder, Journal of Sound and Vibration, 331, 3791–3808.
  • 29. Hasheminejad S.M., Mousavi-akbarzadeh H. (2013), Three dimensional non-axisymmetric transient acoustic radiation from an eccentric hollow cylinder, Wave Motion, 50, 723–738.
  • 30. Hasheminejad S.M., Mousavi-akbarzadeh H. (2015), Transient acoustic radiation from an eccentric sphere, Applied Mathematical Modelling, in press, doi:10.1016/j.apm.2015.04.010.
  • 31. Hasheminejad S.M., Rajabi M. (2008), Scattering and active acoustic control from a submerged piezoelectric-coupled orthotropic hollow cylinder, Journal of Sound and Vibration, 318, 50–73.
  • 32. Hasheminejad S.M., Shakeri R., Rezaei S. (2012), Vibro-acoustic response of an elliptical plate-cavity coupled system to external shock loads, Applied Acoustics, 73, 757–769.
  • 33. Hasheminejad S.M., Shahsavarifard A., Shahsavarifard M. (2008), Dynamic Viscoelastic Effects on Free Vibrations of a Submerged Fluid-filled Thin Cylindrical Shell, Journal of Vibration and Control, 14, 849–865.
  • 34. Hilderbrand F.B. (1992), Methods of Applied Mathematics, Dover, New York.
  • 35. Honarvar F., Enjilela S., Sinclair A.N. (2011), Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder, Ultrasonics, 51, 238–244.
  • 36. Iakovlev S., Santos H.A.F.A., Williston K., Murray R., Mitchell M. (2012), Non-stationary radiation by a cylindrical shell: Numerical modeling using the Reissner-Mindlin theory, Journal of Fluids and Structures, 36, 50–69.
  • 37. Iakovlev S., Seaton C.T., Sigrist J.F. (2013), Submerged circular cylindrical shell subjected to two consecutive shock waves: Resonance-like phenomena, Journal of Fluids and Structures, 24, 70–87.
  • 38. Jin G., Liu X., Liu Z., Yang T. (2011), Active control of structurally radiated sound from an elastic cylindrical shell, Journal of Marine Science and Application, 10, 88–97.
  • 39. Kim H.S., Sohn J.W., Jeon J., Choi S.B. (2013), Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control, Sensors, 13, 2131–2147.
  • 40. Kumar S.R., Ray M.C. (2013), Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1–3 piezoelectric composites, Composite Structures, 105, 173–187.
  • 41. Kwak M.K., Yang D.H., Lee J.H. (2012), Active vibration control of a submerged cylindrical shell by piezoelectric sensors and actuators, Proceedings of SPIE – The International Society for Optical Engineering, 8341, 83412F.
  • 42. Kwak M.K., Yang D.H. (2013), Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator, Journal of Sound and Vibration, 332, 4775–4797.
  • 43. Laplante W., Chen T.H., Baz A., Shields W. (2002), Active control of vibration and noise radiation from fluid-loaded cylinder using active constrained layer damping, Journal of Vibration and Control, 8, 877–902.
  • 44. Leblond C., Sigrist J.F. (2010), A versatile approach to the study of the transient response of a submerged thin shell, Journal of Sound and Vibration, 329, 56–71.
  • 45. Lester H.C., Lefebvre S. (1993), Piezoelectric actuator models for active sound and vibration control of cylinders, Journal of Intelligent Material Systems and Structures, 4, 295–306.
  • 46. Maillard J.P., Fuller C.R. (1999), Active control of sound radiation from cylinders with piezoelectric actuators and structural acoustic sensing, Journal of Sound and Vibration, 222, 363–388.
  • 47. Morgan Matroc Incorporated (1993), Guide to Modern Piezoelectric Ceramics, Electro Ceramics Division.
  • 48. Niezrecki C., Cudney H.H. (2001), Feasibility to control launch vehicle internal acoustic using piezoelectric actuators, Journal of Intelligent Material Systems and Structures, 12, 647–660.
  • 49. Pan X., Tso Y., Juniper R. (2008), Active control of low-frequency hull-radiated noise, Journal of Sound and Vibration, 313, 29–45.
  • 50. Parallel Computing Toolbox MATLAB Available: http://www.mathworks.com/products/parallel-computing/.
  • 51. Pierce A.D. (1991), Acoustics: An Introduction to its Physical Principles and Applications, American Institute of Physics, New York.
  • 52. Ray M.C., Reddy J.N. (2013), Active damping of laminated cylindrical shells conveying ?uid using 1–3 piezoelectric composites, Composite Structures, 98, 261–271.
  • 53. Ruzzene M., Baz A. (2000), Active/passive control of sound radiation and power flow in fluid-loaded shells, Thin-Walled Structures, 38, 17–42.
  • 54. Sarangi S.K., Ray M.C. (2011), Active damping of geometrically nonlinear vibrations of laminated composite shallow shells using vertically/obliquely reinforced 1–3 piezoelectric composites, International Journal of Mechanics and Materials in Design, 7, 29–44.
  • 55. Shen H., Wen J., Yu D., Asgari M., Wen X. (2013), Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control, Journal of Sound and Vibration, 332, 4193–4209.
  • 56. Song K., Atalla M.J., Steven R.H. (June 19, 2000), Active structural acoustic control of a thickwalled cylindrical shell, Proc. SPIE 3984, Smart Structures and Materials 2000: Mathematics and Control in Smart Structures, 112, doi:10.1117/12.388756.
  • 57. Su D., Zhang Q., Zhu S. (2010), Attenuation of Structurally Radiated Sound from an Elastic Cylindrical Shell by Local Vibration Control, Key Engineering Materials, 450, 494–497.
  • 58. Su Y.C., Ma C.C. (2012), Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods, International Journal of Solids and Structures, 49, 1158–1176.
  • 59. Thorp O., Ruzzene M., Baz A. (2005), Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings, Smart Material and Structures, 14, 594–604.
  • 60. ¨Uberall H. (2001), Acoustics of shells, Acoustical Physics, 47, 115–139.
  • 61. Vel S.S., Baillargeon B.P. (2005), Analysis of static deformation vibration and active damping of cylindrical composite shells with piezoelectric shear actuators, Journal of Vibration and Acoustics, 127, 395–407.
  • 62. Vovk I.V., Oliynik V.N. (1996), Sound radiation by a cylindrical piezoelastic shell with an asymmetric insertion, Journal of the Acoustical Society of America, 99, 133–138.
  • 63. Wang Y.F., Berger B.S. (1971), Dynamic interaction between an elastic cylindrical shell subjected to point loadings and an acoustic medium, The Journal of the Acoustical Society of America, 49, 293–298.
  • 64. Wang C.Y., Vaicaitis R. (1998), Active control of vibrations and noise of double wall cylindrical shells, Journal of Sound and Vibration, 216, 865–888.
  • 65. Wilson O.B. (1988), Introduction to the Theory and Design of Sonar Transducers, Naval Sea Systems Command, Washington DC.
  • 66. Xiang Y., Yuan L., Huang Y., Ni Q. (2011), A novel matrix method for coupled vibration and damping effect analyses of liquid-filled circular cylindrical shells with partially constrained layer damping under harmonic excitation, Applied Mathematical Modeling, 35, 2209–222.
  • 67. Yu J., Wu B., Chen G. (2009), Wave characteristics in functionally graded piezoelectric hollow cylinders, Archive of Applied Mechanics, 79, 807–824.
  • 68. Zhang Y., Tong Z.P., Zhangi Z.Y., Hua H.X. (2006), Finite element modeling of a fluid-filled cylindrical shell with piezoelectric damping, Journal of Vibration Engineering, 19, 24–30.
  • 69. http://www.mediafire.com/download/4s2ciq8ldqjsvgb/ SequenceFicker.mp4 (Accessed 30 May 2015) Animation: Effect of control action on the internal/external transient sound pressure fields due to an impulsive pair of diametrical external point loads acting on the piezo-composite cylinder in the second configuration (Config. 2).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ffe4b27-b7ef-428f-b46c-e6505fad44b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.