PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Case study of water vapour transmission properties of EPDM façade membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości dyfuzyjne fasadowych membran EPDM
Języki publikacji
EN
Abstrakty
EN
This research aimed to investigate the water vapour transmission properties of chosen EPDM membranes applied in façade and window systems under laboratory tests. The applied procedure included in national and international standards utilized for the laboratory tests of water vapour transmission properties of EPDM membrane is described. Two main types (outside and inside types) of EPDM membranes are laboratory tested. The authors indicated that the EPDM membranes should differ in surface factures. Nevertheless, some manufacturers mark EPDM membranes on each roll (on the package only) without different permanent denotations on the EPDM membranes surfaces. This form of denotations can cause using problems - using the wrong types of the EPDM aprons in building partitions, because when the package is removed there is impossible to visually identify the type of EPDM membrane (outside or inside type) from the texture of the membrane surface. The experimental results of laboratory tests indicated using the wrong type of EPDM membrane in the inside aprons in building partitions in the investigated façade window system. The designed proportion of the sd values (the resistance to movement of water vapour) of inside and out-side EPDM façade membranes should be designed equally to about 3.0 (recommended value 4) to provide proper diffusion properties of partitions around windows in façade systems. The paper can provide scientists, engineers, and designers an experimental basis in the field of the EPDM membranes water vapour transmission properties applied to façades and windows systems.
PL
Celem badań było określenie właściwości przepuszczalności pary wodnej wybranych membran elewacyjnych EPDM stosowanych w systemach fasadowych i okiennych w ramach testów laboratoryjnych. Omówiono zastosowaną procedurę zawartą w normach krajowych i międzynarodowych stosowanych do badań laboratoryjnych właściwości przepuszczalności pary wodnej membrany EPDM. Dwa główne typy (zewnętrzne i wewnętrzne) membran EPDM zostały poddane badaniom laboratoryjnym. Proces określania właściwości przepuszczalności pary wodnej dla membran EPDM jest długotrwałym badaniem laboratoryjnym. Projektowana proporcja wartości sd (oporu na ruch pary wodnej) wewnętrznych i zewnętrznych membran elewacyjnych EPDM powinna być równa około 3,0 (zalecana wartość 4), aby zapewnić odpowiednie właściwości dyfuzyjne przegród wokół okien w systemach elewacyjnych. Eksperymentalne wyniki badań laboratoryjnych wskazały na zastosowanie niewłaściwego rodzaju membrany EPDM w fartuchach wewnętrznych przegród budowlanych w badanym systemie okien fasadowych. Autorzy mają nadzieję, że opisane testy laboratoryjne wzbudzą żywe zainteresowanie środowiska inżynierów i naukowców, aby uwzględnić tematykę właściwości przepuszczalności pary wodnej membran EPDM stosowanych w systemach elewacjach i okiennych.
Rocznik
Strony
273--285
Opis fizyczny
Bibliogr. 47 poz., il., tab.
Twórcy
  • GUT, Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • [1] S. Agarwal and R.K. Gupta, “Plastics in buildings and construction”, Applied Plastics Engineering Handbook, 2nd ed., S. Ebnesajjad, ed. London: Elsevier, 2017, pp. 635-649, DOI: 10.1016/B978-0-323-39040-8.00030-4.
  • [2] A. Ambroziak, “Mechanical properties of aluminium bracket strengthening”, Archives of Civil Engineering, vol. 65, no. 4, pp. 203-216, 2019, DOI: 10.2478/ace-2019-0055.
  • [3] M. Apollo and E. Miszewska-Urbańska, “Analysis of the increase of construction costs in urban regeneration projects”, Advances in Science and Technology Research Journal, vol. 9, no. 28, pp. 68-74, 2015, DOI: 10.12913/22998624/60786.
  • [4] K. Arendt and M. Krzaczek, “Co-simulation strategy of transient CFD and heat transfer in building thermal envelope based on calibrated heat transfer coefficients”, International Journal of Thermal Sciences, vol. 85, pp. 1-11, 2014, DOI: 10.1016/j.ijthermalsci.2014.06.011.
  • [5] ASTM E96/E96M Standard Test Methods for Water Vapor Transmission of Materials, ASTM International (American Society for Testing and Materials), West Conshohocken, PA, USA, 2016.
  • [6] A.H. Bademlïoğlu, Ö. Kaynakli, and N. Yamankaradeniz, “The effect of water vapor diffusion resistance factor of insulation materials for outer walls on condensation”, Isi Bilim. Ve Tek. Dergisi, Journal of Thermal Science and Technology, vol. 38, no. 2, pp. 15-23, 2018, https://dergipark.org.tr/tr/download/article-file/1239528.
  • [7] V. Bogdanovic and D. Milanovic, “Design of the vapor diffusion characteristics of the exterior facing of the facade thermal insulation systems”, Facta University - Series Architecture and Civil Engineering, vol. 2, no. 5, pp. 349-356, 2003, DOI: 10.2298/fuace0305349b.
  • [8] P. Brzyski, “Risk assesment of water vapor condensation in wall made of hemp-lime composite”, Architecture, Civil Engineering, Environment, vol. 9, no. 2, pp. 47-56, 2016, DOI: 10.21307/acee-2016-021.
  • [9] R. Caulk et al., “A pore-scale thermo-hydro-mechanical model for particulate systems”, Computer Methods in Applied Mechanics and Engineering, vol. 372, pp. 113-292, 2020, DOI: 10.1016/j.cma.2020.113292.
  • [10] T. Cui, Y.J. Chao, and J.W. Van Zee, “Stress relaxation behavior of EPDM seals in polymer electrolyte membrane fuel cell environment”, International Journal of Hydrogen Energy., vol. 37, no. 18, pp. 13478-13483, 2012, DOI: 10.1016/j.ijhydene.2012.06.098.
  • [11] Y. Choi et al., “Why does a high humidity level form in low-income households despite low water vapor generation?”, Sustainability, vol. 12, no.8, p.7563, 2020, DOI: 10.3390/su12187563.
  • [12] C. Diyaroglu et al., “A novel moisture diffusion modeling approach using finite element analysis”, Electronics, vol. 7, no. 12, p. 438, 2018, DOI: 10.3390/electronics7120438.
  • [13] EN 13984 Flexible sheets for waterproofing - Plastic and rubber vapour control layers - Definitions and characteristics, CEN (European Committee for Standardization), Brussels, Belgium, 2013.
  • [14] EN 14909 Flexible sheets for waterproofing - Plastic and rubber damp proof courses - Definitions and characteristics, CEN (European Committee for Standardization), Brussels, Belgium, 2012.
  • [15] A.V. Galyamichev et al., “Bearing capacity of facade systems fixing to sandwich panels”, Magazine of Civil Engineering, no. 2, pp. 30-46, 2018, DOI: 10.18720/MCE.78.3.
  • [16] M. Ginic-Markovic et al., “Adhesion between polyurethane coating and EPDM rubber compound”, Journal of Adhesion Science and Technology, vol. 18, no. 5, pp. 575-596, 2004, DOI: 10.1163/156856104839257.
  • [17] W. He et al., “Novel intumescent flame retardant masterbatch prepared through different processes and its application in EPDM/PP thermoplastic elastomer: thermal stability, flame retardancy and mechanical properties”, Polymers, vol. 11, no. 1, p. 50, 2019, DOI: 10.3390/polym11010050.
  • [18] H.S.L.C. Hens, “The vapor diffusion resistance and air permeance of masonry and roofing systems”, Building and Environment, vol. 41, no. 6, pp. 745-755, 2006, DOI: 10.1016/j.buildenv.2005.03.004.
  • [19] H. Ismail and S.M. Shaari, “Curing characteristics, tensile properties and morphology of palm ash/halloysite nanotubes/ethylene-propylene-diene monomer (EPDM) hybrid composites”, Polymer Testing, vol. 29, no. 7, pp. 872-878, 2010, DOI: 10.1016/j.polymertesting.2010.04.005.
  • [20] K. Kazmierczak, “Review of curtain walls, focusing on design problems and solutions”, Building Encloure Science and Technology Conference, Portland, USA, 2010, pp. 1-20, https://cdn.ymaws.com/www.nibs.org/ resource/resmgr/best/best2_008_ee4-1.pdf.
  • [21] A.I. Khalaf, A.A. Ward, and N.N. Rozik, “Investigation of physical properties and morphology of compatibilized EPDM/EVA blends”, Journal of Thermoplastic Composite Materials, vol. 31, no. 3, pp. 376-391, 2018, DOI: 10.1177/0892705717704486.
  • [22] A.J. Klemm et al., “Non-contact methods of measuring moisture concentration in external layers of building partitions”, Building and Environment, vol. 37, no. 12, pp. 1233-1240, 2002, DOI: 10.1016/S0360-1323(01)00123-8.
  • [23] M. Kołaczkowski and A. Byrdy, “FEM analysis and experimental research into carrier brackets in ventilated facades”, Periodica Polytechnica: Civil Engineering, vol. 64, no. 3, pp. 792-800, 2020, DOI: 10.3311/ppci.13822.
  • [24] A. Kondyurin, “EPDM rubber modified by nitrogen plasma immersion ion implantation”, Materials, vol. 11, no. 5, p. 657, 2018, DOI: 10.3390/ma11050657.
  • [25] B.K. Kreiger and W.V. Srubar, “Moisture buffering in buildings: A review of experimental and numerical methods”, Energy and Buildings, vol. 202, pp. 109-394, 2019, DOI: 10.1016/j.enbuild.2019.109394.
  • [26] M. Lacuve, et al, “Investigation and modelling of the water transport properties in unfilled EPDM elastomers”, Polymer Degradation and Stability, vol. 168, pp. 108-949, 2019, DOI: 10.1016/j.polymdegradstab.2019.108949.
  • [27] H. H. Lee et al., “Evaluation of the thermal environment for condensation and mold problem diagnosis around built-in furniture in Korean apartment buildings during summer and winter”, Energy Procedia., vol. 96, pp. 601-612, 2016, DOI: 10.1016/j.egypro.2016.09.108.
  • [28] A. Leśniak and M. Górka, “Structural analysis of factors influencing the costs of facade system implementation”, Polish Journal of Applied Sciences, vol. 10, no. 17, p. 6021, 2020, DOI: 10.3390/app10176021.
  • [29] E. Litavcova et al., “Diffusion of moisture into building materials: A model for moisture transport”, Energy and Buildings, vol. 68, pp. 558-561, 2014, DOI: 10.1016/j.enbuild.2013.09.018.
  • [30] J. Liu, H. Aizawa, and H. Yoshino, “CFD prediction of surface condensation on walls and its experimental validation”, Building and Environment, vol. 39, no. 8, pp. 905-911, 2004, DOI: 10.1016/j.buildenv.2004.01.015.
  • [31] E.E.B. Meuleman, et al., “EPDM as a selective membrane material in pervaporation”, Journal of Membrane Science, vol. 188, no. 2, pp. 235-249, 2001, DOI: 10.1016/S0376-7388(01)00382-9.
  • [32] A. Miszczuk, A. Kaliszuk-Wietecka, and K. Truchan, “Plasters on facades and the possibility of inter-layer condensation”, in: IOP Conference Series Materials Science and Engineering, Žilina, Slovakia, 2019, pp. 012-143, DOI: 10.1088/1757-899X/661/1/012143.
  • [33] Z.S.M. Nadoushani et al., “Multi-criteria selection of façade systems based on sustainability criteria”, Building and Environment, vol. 121, pp. 67-78, 2017, DOI: 10.1016/j.buildenv.2017.05.016.
  • [34] M. Natali et al., “EPDM based heat shielding materials for Solid Rocket Motors: A comparative study of different fibrous reinforcements”, Polymer Degradation and Stability, vol. 98, no. 11, pp. 2131-2139, 2013, DOI: 10.1016/j.polymdegradstab.2013.09.006.
  • [35] G. Nawalany, P. Sokołowski, and M. Michalik, “Experimental study of thermal and humidity conditions in a historic wooden building in Southern Poland”, Buildings, vol. 10, no. 7, p. 118, 2020, DOI: 10.3390/buildings10070118.
  • [36] PN-EN 13416 Flexible sheets for waterproofing - Bitumen, plastic and rubber sheets for roof waterproofing - Rules for sampling, PKN (Polish Committee for Standardization), Warszawa, 2004.
  • [37] PN-EN 1931 Flexible sheets for waterproofing - Bitumen, plastic and rubber sheets for roof waterproofing - Determination of water vapour transmission properties, PKN (Polish Committee for Standardization), Warsaw, Poland, 2002.
  • [38] R.L. Quirouette, “Building practice note no. 54. The difference between a vapour barrier and an air barrier”, National Research Council Canada, Canada, 1985.
  • [39] T. Rymarczyk, J. Sikora, and P. Tchórzewski, “Implementation of electrical impedance tomography for analysis of building moisture conditions”, COMPEL - International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 37, no. 5, pp. 1837-1861, 2018, DOI: 10.1108/COMPEL-01-2018-0034.
  • [40] P. Slanina and Š. Šilarová, “Moisture transport through perforated vapour retarders”, Building and Environment, vol. 44, no. 8, pp. 1617-1626, 2009, DOI: 10.1016/j.buildenv.2008.10.006.
  • [41] W. Sonderegger and P. Niemz, “Thermal conductivity and water vapour transmission properties of wood-based materials”, European Journal of Wood and Wood Products, vol. 67, pp. 313-321, 2009, DOI: 10.1007/s00107-008-0304-y.
  • [42] J. Torres-Ramo, et al., “Influence of the water vapour permeability of airtight sheets on the behaviour of facade”, Sustainability, vol. 12, no. 24, pp. 104-180, 2020, DOI: 10.3390/su122410480.
  • [43] J.Č. Tovarović, N. Šekularac, and J. Ivanović-Šekularac, “Problems associated with curtain walls”, Structural Engineering International, vol. 27, no. 3, pp. 413-417, 2017, DOI: 10.2749/101686617X14881937385322.
  • [44] L.O. Ugur and N. Leblebici, “An examination of the LEED green building certification system in terms of construction costs”, Renewable and Sustainable Energy Reviews, vol. 81, no. 1, pp. 1476-1483, 2018, DOI: 10.1016/j.rser.2017.05.210.
  • [45] F.Wang et al., “Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene”, Composites Part B: Engineering, vol. 83, pp. 66-74, 2015, DOI: 10.1016/j.compositesb.2015.08.049.
  • [46] R. Wójcik and P. Kosiński, “Thermal and mycological nondestructive active protection of baroque buildings”, Science and Technology for the Built Environment, vol. 25, no. 9, pp. 1244-1252, 2019, DOI: 10.1080/23744731.2019.1629240.
  • [47] M. Zielińska, et al., “Swelling of EPDM rubbers for oil-well applications as influenced by medium composition and temperature. Part I. Literature and theoretical background”, Elastomery, vol. 20, no. 2, pp. 6-17, 2016, https://research.utwente.nl/en/publications/swelling-of-epdm-rubbers-for-oil-well-applications-as-influenced-.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ffc98c3-8f5b-4844-a061-9ae626cbab40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.