PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Pyromorphite formation from montmorillonite adsorbed lead

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reaction of Pb-adsorbed montmorillonite with aqueous solutions of PO4 and Cl ions results in the decrease in phosphate concentration associated with the formation of a new phase – pyromorphite Pb5(PO4)3Cl. Pyromorphite crystals range in size from hundreds of nm to several tens of μm, depending on the PO4, K, and Ca concentrations in the reacting system. A strong ion-exchange effect of K+ and Ca2+ cations on desorption of Pb2+ from Pb-adsorbed montmorillonite was observed. Also, a high concentration of cations leads to a rapid desorption of Pb and the formation of fine pyromorphite crystals. In contrast, low PO4, K and Ca concentrations result in the formation of relatively large euhedral crystals. Final Pb concentrations are much lower in experimental sets than in control experiments with no phosphate present.
Słowa kluczowe
Czasopismo
Rocznik
Strony
75--91
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30, 30–059 Krakow, Poland
  • Department of Geological Sciences, Miami University, Oxford, Ohio, USA
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30, 30–059 Krakow, Poland
Bibliografia
  • Basta, N.T., & McGowen, S.L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127(1), 73-82. DOI: 10.1016/S0269-7491(03)00250-1.
  • Chappell, M.A., & Scheckel, K.G. (2007). Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents. Environmental Chemistry, 4(2), 109-113. DOI: 10.1071/EN06081.
  • Cotter-Howells, J. (1996). Lead phosphate formation in soils. Environmental Pollution, 93(1), 9-16. DOI: 10.1016/0269-7491(96)00020-6.
  • Debela, F., Arocena, J.M., Thring, R.W., & Whitcombe, T. (2010). Organic acid-induced release of lead from pyromorhite and its relevance to reclamation of Pb-contaminated soils. Chemospere, 80(4), 450-456. DOI: 10.1016/j.chemosphere.2010.04.025.
  • Flis, J., Borkiewicz, O., Bajda, T., Manecki, M., & Klasa, J. (2010). Synchrotron-based X-ray diffraction of the lead apatite series Pb10(PO4)6Cl2–Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17(2), 207-214. DOI: 10.1107/S0909049509048705.
  • Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl - mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, (in press). DOI: 10.1016/j.gca.2011.01.021.
  • Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2000). In situ stabilization of soil lead using phosphorous and manganese oxide. Environmental Science and Technology, 34(21), 4614-4619. DOI: 10.1021/es001228p.
  • Hettiarachchi, G.M., Pierzynski, G.M., & Ransom, M.D. (2001). In situ stabilization of soil lead using phosphorous. Journal of Environmental Quality, 30(4), 1214-1221. DOI: 10.2134/jeq2001.3041214x.
  • Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J.C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61(3), 267-276. DOI: 10.1016/S0039-9140(03)00274-1.
  • Ma, Q.Y., Traina, S.J., & Logan, T.J. (1993). In situ lead immobilization by apatie. Environmental Science and Technology, 27(9), 1803-1810. DOI: 10.1021/es00046a007.
  • Ma, Q.Y., Triana, S.J., Logan, T.J., & Ryan, J.A. (1994). Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28(7), 1219-1228. DOI: 10.1021/es00056a007.
  • Ma, L.Q., & Rao, G.N. (1997). Effects of phosphate rock sequential chemical extraction of lead in contaminated soils. Journal of Environmental Quality, 26(3), 788-794. DOI: 10.2134/jeq1997.00472425002600030028x.
  • Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3(4), 178-181. DOI: 10.1007/s10311-005-0030-1.
  • Manecki, M., & Maurice, P.A. (2008). Siderophore promoted dissolution of pyromorphite. Soil Science, 173(12), 821-830. DOI: 10.1097/SS.0b013e31818e8968.
  • Manecki, M., Maurice, P.A., & Traina, S.J. (2000). Kinetics of aqueous Pb reaction with apatites. Soil Science, 165(12), 920-933.
  • Melamed, R., Cao, X., Chen, M., & Ma, L.Q. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 305(1-3), 117-127. DOI: 10.1016/S0048-9697(02)00469-2.
  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3), 121-133. DOI: 10.1007/s10311-007-0133-y.
  • Moore, D. M., & Reynolds Jr, R. C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.
  • Mozgawa, W., Król, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924-926, 427-433. DOI: 10.1016/j.molstruc.2008.12.028.
  • Raicevic, S., Kaludjerovic-Radoicic, T., & Zouboulis, A.I. (2005). In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. Journal of Hazardous Materials, 117(1), 41-53. DOI: 10.1016/j.jhazmat.2004.07.024.
  • Ranatunga, T.D., Taylor, R.W., Schulthess, C.P., Ranatunga, D.R.A., Bleam, W.F., & Zenwo, Z.N. (2008). Lead sorption on phosphatepretreated kaolinite: Modeling, aqueous speciation, and thermodynamics. Soil Science, 173(5), 321-331. DOI: 10.1097/SS.0b013e31816d1e25.
  • Ruby, M.V., Davis, A., & Nicholson, A. (1994). In-situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science and Technology, 28(4), 646-654. DOI: 10.1021/es00053a018.
  • Ryan, J.A., Zhang, P., Hesterberg, D., Chou, J., & Sayers, D.E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science and Technology, 35(18), 3798-3803. DOI: 10.1021/es010634l.
  • Sauvé, S., Martínez, C.E., McBride, M.B., & Hendershot, W.H. (2000). Adsorption of free lead (Pb2+) by pedogenic oxides, ferrihydrite, and leaf compost. Soil Science Society of America Journal, 64(2), 595-599. DOI: 10.2136/sssaj2000.642595x.
  • Scheckel, K.G., & Ryan, J.A. (2002). Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science and Technology, 36(10), 2198-2204. DOI: 10.1021/es015803g.
  • Stack, A.G., Erni, R., Browning, N.D., Casey, W.H. (2004). Pyromorphite growth on lead-sulfide surfaces. Environmental Science and Technology, 38(21), 5529-5534. DOI: 10.1021/es049487s.
  • Taylor, R.W., Bleam, W.F., Ranatunga, T.D., Schulthess, C.P., Senwo, Z.N., & Ranatunga, D.R.A. (2009). X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite. Environmental Science and Technology, 43(3), 711-717. DOI: 10.1021/es8020183.
  • Xie, L., & Giammar, D.E. (2007). Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environmental Science and Technology, 41(23), 8050-8055. DOI: 10.1021/es071517e.
  • Zhang, P., & Ryan, J.A. (1998). Formation of pyromorphite in anglesite–hydroxyapatite suspensions under varying pH conditions. Environmental Science and Technology, 32(21), 3318-3324. DOI: 10.1021/es980232m.
  • Zhang, P., & Ryan, J.A. (1999a). Formation of chloropyromorphite from galena (PbS) in the presence of hydroxyapatite. Environmental Science and Technology, 33(4), 618-624. DOI: 10.1021/es980314a.
  • Zhang, P., & Ryan, J.A. (1999b). Transformation of Pb(II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite. Environmental Science and Technology, 33(4), 625-630. DOI: 10.1021/es980268e.
  • Zhang, P., Ryan, J.A., & Bryndzia, L.T. (1997). Pyromorphite formation from goethite adsorbed lead. Environmental Science and Technology, 31(9), 2673-2678. DOI: 10.1021/es970087x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ffb05cd-fb85-49f4-ac0a-71a5e8234e2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.