Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we use the operational matrices (OMs) and collocation method (CM) to obtain a numerical solution for a class of variable-order differential equations (VO-DEs). The fractional derivatives and the VO-derivatives are in the Caputo sense. The operational matrices are computed based on the Hosoya polynomials (HPs) of simple paths. Firstly, we assume the unknown function as a finite series by using the Hosoya polynomials as the basis functions. To obtain the unknown coefficients of this approximation, we computed the operational matrices of all terms of the main equations. Then, by using the operational matrix and collocation points, the governing equations are converted to a set of algebraic equations. Finally, an approximate solution is obtained by solving those algebraic equations.
Rocznik
Tom
Strony
97--108
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Department of Applied Mathematics, University of Mazandaran Babolsar, Iran
autor
- Department of Applied Mathematics, University of Mazandaran Babolsar, Iran
autor
- Department of Applied Mathematics, University of Mazandaran Babolsar, Iran
Bibliografia
- [1] Podlubny, I. (1998). Fractional Differential Equations. Elsevier.
- [2] Sun, H., Chang, A., Zhang, Y., & Chen, W. (2019). A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fractional Calculus and Applied Analysis, 22(1), 27-59.
- [3] Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., & Skovranek, T. (2013). Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1990),20120-20146.
- [4] Jiang, Y., Wang, X., & Wang, Y. (2012). On a stochastic heat equation with first order fractional noises and applications to finance. Journal of Mathematical Analysis and Applications, 396(2), 656-669.
- [5] Atangana, A. (2017). Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Elsevier.
- [6] Popovic, J.K., Spasic, D.T., Tosic, J., Kolarovic, J.L., Malti, R., Mitic, I.M., & Atanackovic, T.M. (2015). Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 451-471.
- [7] Masti, I., Sayevand, K., & Jafari, H. (2024). On analyzing two dimensional fractional order brain tumor model based on orthonormal Bernoulli polynomials and Newton’s method. An International Journal of Optimization and Control: Theories and Applications (IJOCTA),14(1), 12-19.
- [8] Malesza, W., Sierociuk, D., & Macias, M. (2015). Solution of fractional variable order differentia equation. American Control Conference (ACC), 1537-1542.
- [9] Samko, S.G., & Ross, B. (1993). Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions, 1(4), 277-300.
- [10] Sheykhi, S., Matinfar, M., & Firoozjaee, M.A. (2022). Solving a class of variable-order differentia equations via Ritz-approximation method and Genocchi polynomials. Journal of Mathematical Extention, 15(5), 1-13.
- [11] Malesza,W., Macias, M., & Sierociuk, D. (2019). Analytical solution of fractional variable order differential equations. Journal of Computational and Applied Mathematics, 348, 214-236.
- [12] Chen, Y.M., Wei, Y.Q., Liu, D.Y., & Yu, H. (2015). Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Applied Mathematics Letters, 46(2015), 83-88.
- [13] Bhrawy, A.H., & Zaky, M.A. (2015). Numerical simulation for two dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynamics, 80(1), 101-116.
- [14] Tavares, D., Almeida, R., & Torres, D.F. (2016). Caputo derivatives of fractional variable order: numerical approximations. Communications in Nonlinear Science and Numerical Simulation, 35(2016), 69-87.
- [15] Li, X., & Wu, B. (2017). A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. Journal of Computational and Applied Mathematics, 311(2017), 387-393.
- [16] Refice, A., Souid, M.S., & Yakar, A. (2021). Some qualitative properties of nonlinear fractional integro-differential equations of variable order. An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 11(3), 68-78.
- [17] Ganji, R.M, Jafari, H., & Adem, A.R. (2019). A numerical scheme to solve variable order diffusion-wave equations. Thermal Science, 23(6), 2063-2071.
- [18] Jafari, H., Ganji, R.M., Salati, S., & Johnston, S.J. (2024). A mixed-method to simulation variable order stochastic advection diffusion equations. Alexandria Engineering Journal, 89, 60-70.
- [19] Hammouch, Z., Yavuz, M., & Ozdemir, N. (2021). Numerical solutions and synchronization of a variable-order fractional chaotic system. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 11-23.
- [20] Ganji, R.M., Jafari, H., & Nemati, S. (2020). A new approach for solving integro-differential equations of variable order. Journal of Computational and Applied Mathematics, 379, 112946.
- [21] Tuan, N.H., Nemati, S., Ganji, R.M., & Jafari, H. (2020). Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Engineering with Computers, 1-9.
- [22] Zhang, A., Ganji, R.M., Jafari, H., Ncube, M.N., & Agamalieva, L. (2022). Numerical solution of distributed-order integro-differential equations. Fractals, 30(05), 1-10.
- [23] Jafari, H., Ganji, R.M., Ganji, D.D., Hammouch, Z., & Gasimov, Y.S. (2023). A novel numerical method for solving fuzzy variable-order differential equations with Mittag-Leffler kernels. Fractals, 31(04), 2340063.
- [24] Jafari, H., Ganji, R.M., Narsale, S.M., Nguyen, M., & Nguyen, V.T. (2023). Application of Hosoya polynomial to solve a class of time fractional diffusion equations. Fractals, 31(04), 2340059.
- [25] Almeida, R., Tavares, D., & Torres, D.F.M. (2019). The Variable-Order Fractional Calculus of Variations. Springer.
- [26] Salati, S., Matinfar, M., & Jafari, H. (2023). A numerical approach for solving Bagely-Torvik and fractional oscillation equations. Advanced Mathematical Models and Applications, 8(2), 241-252.
- [27] Cao, J.X., & Qiu, Y.N. (2016). A high order numerical scheme for variable order fractional ordinary differential equation. Applied Mathematics Letters, 61, 88-94.
- [28] Shen, S., Liu, F., Chen, J., Turner, I., & Anh, V. (2012). Numerical techniques for the variable order time fractional diffusion equation. Applied Mathematics and Computation, 218,10861-10870.
- [29] Li, X., Li, H., &Wu, B. (2017). A new numerical method for variable order fractional functional differential equations. Applied Mathematics Letters, 68, 80-86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ffa31de-dc14-473d-b680-491fca1f5269