PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of the reliability of the operation of a sewage treatment plant using Monte Carlo simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to model the operation of a wastewater treatment plant using the Monte Carlo method and selected probability distributions of random variables. Pollutant indices in treated wastewater were analysed, such as: biological oxygen demand (BOD5), chemical oxygen demand (CODCr), total suspended solids (TSS), total nitrogen (Ntot), total phosphorus (Ptot). The preliminary analysis of pollution indicators series included the: calculation of descriptive statistics and assessment of biological degradability of wastewater. The consistency of the theoretical distributions with the empirical ones was assessed using Anderson-Darling statistics. The best-fitting statistical distributions were selected using the percent bias criterion. Based on the calculations performed, it was found that the analysed indicators of pollution in treated wastewater were characterised by an average variability of composition for BOD5, CODCr and TSS, and a high variability of composition for Ntot and Ptot. The best fitted distribution was log-normal for BOD5, TSS, Ntot and Ptot and general extreme values for CODCr. The simulation carried out using the Monte-Carlo method confirmed that there may be problems associated with the reduction of nutrients (Ntot and Ptot) the analysed wastewater treatment plant. Results of values obtained of the risk values of negative control of wastewater treatment plant operation for biogenic compounds, different from 1, indicate that the number of exceedances at the outflow may be higher than the acceptable one.
Wydawca
Rocznik
Strony
80--90
Opis fizyczny
Bibliogr. 62 poz., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Sanitary Engineering and Water Management, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Sanitary Engineering and Water Management, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • Sumy State University, Faculty of Technical System and Energy Efficient Technologies, Department of Applied Ecology, Sumy, Ukraine
  • Cracow University of Economics, Institute of Spatial Management and Urban Studies, Department of Spatial Management, Kraków, Poland
  • Polytechnic Institute of Beja, Department of Technology and Applied Sciences, Beja, Portugal
  • University of Beira Interior, Faculty of Engineering, Research Unit Fiber Materials and Environmental Technologies (FibEnTech-UBI), Covilhã, Portugal
  • Polytechnic Institute of Beja, Department of Technology and Applied Sciences, Beja, Portugal
  • University of Beira Interior, Faculty of Engineering, Research Unit Fiber Materials and Environmental Technologies (FibEnTech-UBI), Covilhã, Portugal
  • University Nova of Lisbon, Faculty of Science and Technology, Center for Environmental and Sustainability Research (CENSE), Lisbon, Portugal
  • Stalprodukt S.A., Bochnia, Poland
Bibliografia
  • AJMAL M., WASEEM M., KIM D., KIM T.W. 2020. A pragmatic slope-adjusted curve number model to reduce uncertainty in predicting flood runoff from steep watersheds. Water. Vol. 12(5) p. 1469–1484. DOI 10.3390/w12051469.
  • ALAM M.A., EMURO K., FARNHAM C., YUAN J. 2018. Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh. Climate. Vol. 6 p. 9–25. DOI 10.3390/cli6010009.
  • ANGELAKIS A.N., GIKAS P. 2014. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. Water Utilization Journal. Vol. 8 p. 67–78.
  • ANDRAKA D., DZIENIS L. 2013. Modelowanie ryzyka w eksploatacji oczyszczalni ścieków [Modeling of risk in the operation of wastewater treatment plants]. Roczniki Ochrony Środowiska. Vol. 15 p. 1111–1125.
  • ARCHIBALD J.A., BUCHANAN B., FUKA D.R., GEORGAKAKOSC B., LYON S.W., WALTER M.T. 2014. A simple, regionally parameterized model for predicting nonpoint source areas in the northeastern US. Journal of Hydrology: Regional Studies. Vol. 1 p. 74–91. DOI 10.1016/j.ejrh.2014.06.003.
  • BARTON L.E., AUFFAN M., DURENKAMPF M., MCGRATH S., BOTTERO J., WIESNER M.R. 2015. Monte Carlo simulations of the transformation and removal of Ag, TiO2 , and ZnO nanoparticles in wastewater treatment and land application of biosolids. Science Total Environment. Vol. 511 p. 535–543. DOI 10.1016/j.scitotenv.2014.12.056.
  • BUGAJSKI P., ALMEIDA M.A.A., KUREK K. 2016. Reliability of sewage treatment plants processing sewage from school buildings located in non-urban areas. Infrastructure and Ecology of Rural Areas. Vol. 4 p. 1547–1557. DOI 10.14597/infraeco.2016.4.3.115.
  • BUGAJSKI P., CHMIELOWSKI K., WĄSIK E. 2015. Wpływ opadów atmosferycznych na temperaturę oraz objętość ścieków w małym systemie kanalizacyjnym [Influence of atmospheric precipitations on temperature and volume of wastewater in small sewage system]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 4 p. 1057–1066. DOI 10.14597/infraeco.2015.4.1.084.
  • BUGAJSKI P., KACZOR G. 2008a. Ocena działania wybranych przydomowych oczyszczalni w warunkach zimowych i letnich [Evaluation of operation of some domestic sewage treatment plants under winter and summer conditions]. Przemysł Chemiczny. Vol. 87(5) p. 424–426.
  • BUGAJSKI P., KUREK K., MŁYŃSKI D., OPERACZ A. 2019. Designed and real hydraulic load of household wastewater treatment plants. Journal of Water and Land Development. Vol. 40 p. 155–160. DOI 10.2478/jwld-2019-0017.
  • BUGAJSKI P., MIELENZ B. 2008b. Ocena pracy oczyszczalni ścieków w Wadowicach przed modernizacją [The assessment of working sewage treatment plant at Wadowice before moddernization]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 2 p. 129–138.
  • CHMIELOWSKI K., WĄSIK E., OPERACZ A., BUGAJSKI P., KACZOR G., JURÍK L. 2017. Analysis of sewage susceptibility to biodegradation on an example of sewage treatment plant in Wodzisław Śląski. Infrastructure and Ecology of Rural Areas. Vol. 4(1) p. 1427–1443. DOI 10.14597/infraeco.2017.4.1.109.
  • DŁUGOSZ J., GAWDZIK J. 2013. Ocena skuteczności funkcjonowania oczyszczalni ścieków w Barczy (woj. świętokrzyskie) [Evaluation of functioning of sewage treatment plant near Barcza (Świętokrzyskie Province)]. Proceedings of ECOpole. Vol. 7(1) p. 311–317. DOI 10.2429/proc.2013.7(1)042.
  • DONIGIAN A.S., IMHOFF J.C., BICKNELL B.R. 1983. Predicting water quality resulting from agricultural nonpoint-source pollution via simulation: HSPF. In: Agricultural management and water quality. Ames. Iowa State University Press p. 200–249.
  • EVANS D.L., DREW J.H., LEEMIS L.M. 2017. The distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for exponential populations with estimated parameters. Computational Probability Applications. Vol. 247 p. 165–190. DOI 10.1080/03610910801983160.
  • FLORES-ALSINA X., GALLEGO A., FEIJOO G., RODRIGUEZ-RODA R. 2010. Multiple-objective evaluation of wastewater treatment plant control alternatives. Journal of Environmental Management. Vol. 91(5) p. 1193–1201. DOI 10.1016/j.jenvman.2010.01.009.
  • FLORES-ALSINA X., RODRIGUEZ-RODA I., SIN G., GERNAEY K.V. 2008. Multi-criteria analysis of wastewater treatment plant control strategies under uncertainty. Water Resources. Vol. 42(17) p. 4485–4497. DOI 10.1016/j.watres.2008.05.029.
  • GERNAEY K.V., VAN LOOSDRECHT M.C.M., HENZE M., LIND M., JØRGENSEN S.B. 2004. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software. Vol. 19 p. 763–783. DOI 10.1016/j.envsoft.2003.03.005.
  • GIZIŃSKA-GÓRNA M., JÓŹWIAKOWSKI K., MARZEC M., PYTKA A., SOSNOWSKA B., RÓŻAŃSKA-BOCZULA M., LISTOSZ A. 2017. Analysis of the influence of a hybrid constructed wetland wastewater treatment plant on the water quality of the receiver. Annual Set The Environment Protection. Vol. 19 p. 370–393.
  • GLICKMAN T.S., XU F. 2008. The distribution of the product of two random variables. Statistics and Probability Letters. Vol. 78 p. 2821–2826. DOI 10.1016/j.spl.2008.03.031.
  • GUPTA H.V., SOROOSHIAN S., YAPO P.O. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrology Engineering. Vol. 4(2) p. 135–143. DOI 10.1061/(ASCE)1084-0699(1999)4:2(135).
  • HALTON J.H. 1970. Retrospective and prospective survey of the Monte Carlo method. SIAM Review. Vol. 12(1) p. 1–63.
  • HEIDRICH Z., WITKOWSKI A. 2010. Urządzenia do oczyszczania ścieków: Projektowanie, przykłady obliczeń [Equipment for wastewater treatment: Design, examples of calculations]. Warszawa. Wydaw. Seidel-Przywecki. ISBN 978-83-60956-14-4 pp. 320.
  • HENDREN C.O., BADIREDDY A.R., CASMAN E., WIESNER M.R. 2013. Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Science of Total Environment. Vol. 449 p. 418–425. DOI 10.1016/j.scitotenv.2013.01.078.
  • JAGIEŁŁO R., BEKER C., JAGODZIŃSKI A.M. 2016. Ocena zgodności rozkładów empirycznych pierśnic drzewostanów bukowych różnych klas wieku z wybranymi rozkładami teoretycznymi [Goodness of fit evaluation of the breast height diameter distributions of beech stands differing in age with selected theoretical distributions]. Sylwan. Vol. 160(2) p. 107−119.
  • JANOSZ-RAJCZYK M. 2008. Badania wybranych procesów oczyszczania ścieków [Research on selected wastewater treatment processes]. Częstochowa. Wydawnictwo Politechniki Częstochowskiej. ISBN 9788371933837 pp. 249.
  • JÄNTSCHI L., BOLBOACĂ S.D. 2018. Computation of probability associated with Anderson–Darling statistic. Mathematics. Vol. 6 p. 88–104. DOI 10.3390/math6060088.
  • KACZOR G. 2009. Concentrations of the pollutants in the sewage rained from the rural sewerage systems in lesser Poland voivodship. Infrastructure and Ecology of Rural Areas. Vol. 9 p. 97–104.
  • KACZOR G., BERGEL T., BUGAJSKI P., PIJANOWSKI J. 2015. Aspects of sewage disposal from tourist facilities in national parks and other protected areas. Polish Journal of Environmental Studies. Vol. 24 p. 107–114. DOI 10.15244/pjoes/28355.
  • KLIMIUK E., ŁEBKOWSKA M. 2003. Biotechnologia w ochronie środowiska [Biotechnology in environmental protection]. Warszawa. Wydaw. Nauk. PWN. ISBN 8301140674 pp. 268.
  • KUREK K., BUGAJSKI P., OPERACZ A., MŁYŃSKI D., WAŁĘGA A. 2020. Technological reliability of sewage treatment plant with the Pomiltek Mann type bioreactor. Journal of Water and Land Development. Vol. 46 p. 146–152. DOI 10.24425/jwld.2020.134207.
  • ŁOMOTOWSKI J., SZPINDOR A. 1999. Nowoczesne systemy oczyszczania ścieków [Modern wastewater treatment systems]. Warszawa. Arkady. ISBN 83-213-4139-x pp. 456.
  • MARZEC M. 2017. Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants. Journal of Water and Land Development. Vol. 35 p. 141–148. DOI 10.1515/jwld-2017-0078.
  • MIKSCH K., SIKORA J. 2021. Biotechnologia ścieków [Wastewater biotechnology]. Warszawa. Wydaw. Nauk. PWN. ISBN 9788301161835 pp. 238.
  • MŁYŃSKA A., CHMIELOWSKI K., MŁYŃSKI D. 2017. Analiza zmian jakości ścieków w trakcie procesów oczyszczania na oczyszczalni w Przemyślu [The analysis of the changes in the sewage quality during treatment processes on the wastewater treatment plant in Przemyśl]. Inżynieria Ekologiczna. Vol. 18 p. 18–26. DOI 10.12912/23920629/74973.
  • MŁYŃSKI D., BUGAJSKI P., MŁYŃSKA A. 2019. Application of the mathematical simulation methods for the assessment of the wastewater treatment plant operation work reliability. Water. Vol. 11(5) p. 873–890. DOI 10.3390/w11050873.
  • MŁYŃSKI D., CHMIELOWSKI K., MŁYŃSKA A. 2016a. Ocena skuteczności oraz stabilności pracy oczyszczalni ścieków w Zabajce [The assesment of the efficency and stability of work sewage treatment plant in Zabajka]. Inżynieria Ekologiczna. Vol. 47 p. 123–130. DOI 10.12912/23920629/62856.
  • MŁYŃSKI D., CHMIELOWSKI K., MŁYŃSKA A., MIERNIK W. 2016b. Ocena skuteczności pracy oczyszczalni ścieków w Jaśle [Evaluation of efficency of sewage treatment plant in Jasło]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 1 p. 147–162. DOI 10.14597/infraeco.2016.1.1.011.
  • MŁYŃSKI D., KUREK K., BUGAJSKI P. 2018. An analysis of seasonal waste draining for the urban agglomeration using statistical methods. Water. Vol. 10(8) p. 976–990. DOI 10.3390/w10080976.
  • MŁYŃSKI D., MŁYŃSKA A., CHMIELOWSKI K., PAWEŁEK J. 2020. Investigation of the wastewater treatment plant processes efficiency using statistical tools. Sustainability. Vol. 12(24) p. 10522–10538. DOI 10.3390/su122410522.
  • MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R.L., HARMEL R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885–900. DOI 10.13031/2013.23153.
  • NOWOBILSKA-MAJEWSKA E., BUGAJSKI P.M. 2019. The analysis of the amount of pollutants in wastewater after mechanical treatment in the aspect of their susceptibility to biodegradation in the treatment plant in Nowy Targ. Journal of Ecological Engineering. Vol. 20(8) p. 135–143. DOI 10.12911/22998993/110393.
  • OLIVEIRA S.C., VON SPERLING M. 2007. Reliability analysis of stabilisation pond systems. Water Science & Technology. Vol. 55(11) p. 127–134. DOI 10.2166/wst.2007.343.
  • OLIVEIRA S.C., VON SPERLING M. 2008. Reliability analysis of wastewater treatment plants. Water Research. Vol. 42(4–5) p. 1182–1194. DOI 10.1016/j.watres.2007.09.001.
  • OLYAEI M.A., KARAMOUZ M., ASCE F., FARMANI R. 2018. Framework for assessing flood reliability and resilience of wastewater treatment plants. Journal of Environmental Engineering. Vol. 144(9) p. 1–14. DOI 10.1061/(ASCE)EE.1943-7870.0001422.
  • PŁUCIENNIK-KOROPCZUK E., JAKUBASZEK A. 2012. Podatność ścieków na rozkład biochemiczny w procesach mechaniczno-biologicznego oczyszczania [Susceptibility of wastewater for biochemical decomposition in mechanical – biological wastewater treatment processes]. Zeszyty Naukowe. Inżynieria Środowiska. Vol. 148 (28) p. 73–83.
  • PSARROU E., TSOUKALAS I., MAKROPOULOS E. 2018. A Monte-Carlo-based method for the optimal placement and operation scheduling of sewer mining units in urban wastewater networks. Water. Vol. 10 p. 200–223. DOI 10.3390/w10020200.
  • Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych [Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and conditions to be met during sewage discharge into the water or into the ground and during rainwater or snowmelt discharge into the water or into the water devices]. Dz.U. 2019 poz. 1311.
  • SCHAUBERGER G., PIRINGER M., BAUMAN-STANZER K., KNAUDER W., PETZ E. 2013. Use of a Monte Carlo technique to complete a fragment set of H2S emission rates from a wastewater treatment plant. Journal of Hazardous Materials. Vol. 263 p. 694–701. DOI 10.1016/j.jhazmat.2013.10.034.
  • SINGH J., KNAPP H.V., ARNALD J.G., DEMISSIE M. 2004. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. Journal of the American Water Resources Association. Vol. 41(2) p. 343–360. DOI 10.1111/j.1752-1688.2005.tb03740.x.
  • TAHERIYOUN M., MORADINEJAD S. 2015. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environmental Monitoring and Assessment. Vol. 187 p. 4186–4199. DOI 10.1007/s10661-014-4186-7.
  • TODESCHINI S. 2016. Hydrologic and environmental impacts of imperviousness in an industrial catchment of Northern Italy. Journal of Hydrologic Engineering. Vol. 21(7). DOI 10.1061/(ASCE)HE.1943-5584.0001348.
  • VAN LIEW M.W., ARNOLD J.G., GARBRECHT J.D. 2003. Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE. Vol. 46(6) p. 1539–15512. DOI 10.13031/2013.15643.
  • WAŁĘGA A., CHMIELOWSKI K., MŁYŃSKI D. 2018. Influence of the hybrid sewage treatment plant’s exploitation on its operation effectiveness in rural areas. Sustainability. Vol. 10 p. 2689–2706. DOI 10.3390/su10082689.
  • WAŁĘGA A., CHMIELOWSKI K., MŁYŃSKI D. 2019. Nitrogen and phosphorus removal from sewage in biofilter – Activated sludge combined systems. Polish Journal of Environmental Studies. Vol. 28 p. 1939–1947. DOI 10.15244/pjoes/89898.
  • WAŁĘGA A., RUTKOWSKA A., POLICHT-LATAWIEC A. 2014. Sensitivity of beta and Weibull synthetic unit hydrographs to input parameter changes. Polish Journal of Environmental Studies. Vol. 1 p. 221–229.
  • WANG X. (ed.) 2010. Vehicle noise and vibration refinement. Sawstone. Woodhead Publishing. ISBN 978-1-84569-804-1 pp. 416.
  • WĄSIK E., CHMIELOWSKI K. 2013. Evaluation of the operation of the sewage treatment plant, Kujawy in Cracow. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego. Vol. 10 p. 481–488.
  • YU G., SAPIRO G., MALLAT S. 2012. Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing. Vol. 21 p. 2481–2499. DOI 10.48550/arXiv.1006.3056.
  • YUAN Y., NIE J., MCCUTCHEON S.C., TAGUAS E.V. 2014. Initial abstraction and curve numbers for semiarid watersheds in south eastern Arizona. Hydrological Processes. Vol. 28 p. 774–783. DOI 10.1002/hyp.9592.
  • ZENG X., WANG D., WU J. 2015. Evaluating the three methods of goodness of fit test for frequency analysis. Journal of Risk Analysis and Crisis Response. Vol. 5(3) pp. 178–187. DOI 10.2991/jrarc.2015.5.3.5.
  • ZORAN D., WEISS Y. 2011. From learning models of natural image patches to whole image restoration. International Conference on Computer Vision p. 479–486. DOI 10.1109/ICCV.2011.6126278.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ff954ef-d5c6-4d65-97f5-b90eeafac53e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.