PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In-vitro Digestibility Organic Materials–Relation with Field Mass Loss Litter Bag Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decomposition and litterfall are the primary mechanisms by which plants release their organic matter and nutrients into the soil, which helps prepare the stage for beneficial pathways in the restoration of damaged ecosystems. Species selection and allocation for the successful use of litter in ecological agricultural fields relies on knowing the mechanisms of plant litter decomposition and its influence on soil nutrients, which are crucial aspects of the ecosystem material cycle. In current study, in-vitro dry matter digestibility (IVDMD) used for evaluating quality animal feed reveals some potential in the decomposition of organic matter estimated. Nevertheless, some consensual advantages as laboratory incubation, this methodology demands a validation procedure. Therefore, the present work aimed to validate the IVDMD methodology by comparison with field buried litter bag mass loss, for 27 organic materials with different origins and chemical quality. The results reveal significant differences among the organic materials studied, reflecting their chemical quality variation, with digestibility values varying between 10.1g·kg-1 in composted sewage sludge and 982.0 g·kg-1 in pig meat meal. IVDMD presented high accuracy results for all studied periods, with best results observed for 28 days incubation period (r2adj=0.959***). Taking the chemical fractions that participated in initial decomposition process the IVDMD is a potential indicator of a labile decomposable pool of organic materials. Considering the high accuracy, repeatability (CV=4.6%) and practicability, the IVDMD is a reliable alternative to the litter bag method in field mass loss availability.
Słowa kluczowe
Rocznik
Strony
253--263
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), UTAD, Vila Real, Portugal
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), UTAD, Vila Real, Portugal
  • Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga, 4710-057, Portugal
  • Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), UTAD, Vila Real, Portugal
  • Centro de Química da Vila Real (CQ-VR), UTAD, Vila Real, Portugal
Bibliografia
  • 1. Almagro, M., Martínez-Mena, M., 2012. Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: Dependence on litter type and site conditions. Plant and Soil 358, 323335. https://doi.org/10.1007/S11104-012-1187-6/METRICS
  • 2. Álvarez, C.R., Álvarez, R., Sarquis, A., 2008. residue decomposition and fate of nitrogen – 15 in a wheat crop under different previous crops and tillage systems. Communications in Soil Science and Plant Analysis 39, 574–586. https://doi.org/10.1080/00103620701826886
  • 3. Apráez Guerrero, J.E., 2020. Análisis químico de alimentos para animales. Análisis Químico De Alimentos Para Animales. https://doi.org/10.22267/ LIB.UDN.012
  • 4. Arisawa, K., 1998. Ecologic studies. Modern Epidemiology 56, 459–480. https://doi.org/10.1265/JJH.56.463
  • 5. Barnes, R., Schall, E.D., Marten, G.C., 1979. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems.
  • 6. Berg, B., 2014. Decomposition patterns for foliar litter – A theory for influencing factors. Soil Biology and Biochemistry 78, 222–232. https://doi.org/10.1016/J.SOILBIO.2014.08.005
  • 7. Berg, B., Laskowski, R., 2006. Litter decomposition: a guide to carbon and nutrient turnover.
  • 8. Berg, B., McClaugherty, C., 2014. Plant litter. Plant Litter. https://doi.org/10.1007/978-3-642-38821-7
  • 9. Berg, B., McClaugherty, C., 2008. Plant litter: Decomposition, humus formation, carbon sequestration. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 1–338. https://doi.org/10.1007/978-3-540-74923-3/COVER
  • 10. Bradford, M.A., Ciska, G.F., Bonis, A., Bradford, E.M., Classen, A.T., Cornelissen, J.H.C., Crowther, T.W., De Long, J.R., Freschet, G.T., Kardol, P., Manrubia-Freixa, M., Maynard, D.S., Newman, G.S., Logtestijn, R.S.P., Viketoft, M., Wardle, D.A., Wieder, W.R., Wood, S.A., Van Der Putten, W.H., 2017. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution 1, 1836–1845. https://doi.org/10.1038/s41559-017-0367-4
  • 11. Brandt, L.A., King, J.Y., Milchunas, D.G., 2007. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology 13, 2193–2205. https://doi.org/10.1111/J.1365-2486.2007.01428.X
  • 12. Calderón, F.J., McCarty, G.W., Kessel, J.A.S. Van, Reeves, J.B., 2004. Carbon and Nitrogen Dynamics During Incubation of Manured Soil. Soil Science Society of America Journal 68, 1592–1599. https://doi.org/10.2136/SSSAJ2004.1592
  • 13. Clark, K.W., Mott, G.O., 2011. The dry matter digestion in vitro of forage crops. https://doi.org/10.4141/cjps60014 40, 123–129. https://doi.org/10.4141/CJPS60-014
  • 14. Cobo, J.G., Barrios, E., Kass, D.C.L., Thomas, R.J., 2002. Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant and Soil 240, 331–342. https://doi.org/10.1023/A:1015720324392/METRICS
  • 15. Cornelissen, J.H.C., Pérez-Harguindeguy, N., Díaz, S., Grime, J.P., Marzano, B., Cabido, M., Vendramini, F., Cerabolini, B., 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist 143, 191–200. https://doi.org/10.1046/J.1469-8137.1999.00430.X
  • 16. Cotrufo, M.E., Miller, M., Zeller, B., 2000. Litter Decomposition 276–296. https://doi.org/10.1007/978-3-642-57219-7_13
  • 17. Cou ̂teaux, M.M., Bottner, P., Berg, B., 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10, 63–66. https://doi.org/10.1016/S0169-5347(00)88978-8
  • 18. do Rosário G. Oliveira, M., van Noordwijk, M., Gaze, S.R., Brouwer, G., Bona, S., Mosca, G., Hairiah, K., 2000. Auger sampling, ingrowth cores and pinboard methods. Root Methods 175–210. https://doi.org/10.1007/978-3-662-04188-8_6
  • 19. García-Palacios, P., Maestre, F.T., Kattge, J., Wall, D.H., 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16, 10451053. https://doi.org/10.1111/ELE.12137
  • 20. Getachew, G., Blümmel, M., Makkar, H.P.S., Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology 72, 261–281. https://doi.org/10.1016/S0377-8401(97)00189-2
  • 21. Heim, A., Frey, B., 2004. Early stage litter decomposition rates for swiss forests. Biogeochemistry 70, 299–313. https://doi.org/10.1007/S10533-003-0844-5/METRICS
  • 22. Herrmann, A., Witter, E., 2002. Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils. Soil Biology and Biochemistry 34, 1495–1505. https://doi.org/10.1016/S0038-0717(02)00121-9
  • 23. Hobbie, S.E., 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in Ecology & Evolution 30, 357–363. https://doi.org/10.1016/J.TREE.2015.03.015
  • 24. Huang, W.Z., Schoenau, J.J., 1997. Mass loss measurements and statistical models to predict decomposition of leaf litter in a boreal aspen forest. Communications in Soil Science and Plant Analysis 28, 863–874. https://doi.org/10.1080/00103629709369838
  • 25. Jalota, R., Dalal, R., Harms, B., Page, K., Mathers, N., Wang, W., 2006. Effects of litter and fine root composition on their decomposition in a rhodic paleustalf under different land uses. Communications in Soil Science and Plant Analysis 37, 18591875. https://doi.org/10.1080/00103620600767108
  • 26. Jarvis, S.C., Stockdale, E.A., Shepherd, M.A., Powlson, D.S., 1996. Nitrogen Mineralization in Temperate Agricultural Soils: Processes and Measurement. Advances in Agronomy 57, 187–235. https://doi.org/10.1016/S0065-2113(08)60925-6
  • 27. Jensen, L.S., Salo, T., Palmason, F., Breland, T.A., Henriksen, T.M., Stenberg, B., Pedersen, A., Lundström, C., Esala, M., 2005. Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant and Soil 273, 307–326. https://doi.org/10.1007/S11104-004-8128-Y/METRICS
  • 28. Kraus, T.E.C., Zasoski, R.J., Dahlgren, R.A., Horwath, W.R., Preston, C.M., 2004. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biology and Biochemistry 36, 309–321. https://doi.org/10.1016/J.SOILBIO.2003.10.006
  • 29. Kumar, K., Goh, K.M., 2003. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Communications in Soil Science and Plant Analysis 34, 2441–2460. https://doi.org/10.1081/CSS-120024778
  • 30. Lee, H., Rahn, T., Throop, H., 2012. An accounting of C-based trace gas release during abiotic plant litter degradation. Global Change Biology 18, 1185–1195. https://doi.org/10.1111/J.1365-2486.2011.02579.X
  • 31. Mafongoya, P.L., Giller, K.E., Palm, C.A., 1997. Decomposition and nitrogen release patterns of tree prunings and litter. Agroforestry Systems 38, 77–97. https://doi.org/10.1023/A:1005978101429/METRICS
  • 32. Nahavandinejad, M., Seidavi, A., Asadpour, L., 2012. Temperature treatment of soybean meal on intestinal microbial flora in broilers. African Journal of Microbiology Research 6. https://doi.org/10.5897/AJMR11.1594
  • 33. Olk, D.C., Cassman, K.G., Schmidt-Rohr, K., Anders, M.M., Mao, J.D., Deenik, J.L., 2006. Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biology and Biochemistry 38, 3303–3312. https://doi.org/10.1016/J.SOILBIO.2006.04.009
  • 34. Osono, T., Takeda, H., 2005. Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecological Research 20, 51–58. https://doi.org/10.1007/S11284-004-0011-Z
  • 35. Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S., King, J.Y., Adair, E.C., Brandt, L.A., Hart, S.C., Fasth, B., 2007. Globalscale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364. https://doi.org/10.1126/SCIENCE.1134853/SUPPL_FILE/PARTON.SOM.REVISED.PDF
  • 36. Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J.H.C., Vendramini, F., Cabido, M., Castellanos, A., 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218, 21–30. https://doi.org/10.1023/A:1014981715532/METRICS
  • 37. Reichstein, M., Bednorz, F., Broll, G., Kätterer, T., 2000. Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biology and Biochemistry 32, 947–958. https://doi.org/10.1016/ S0038-0717(00)00002-X
  • 38. Laurance W.F., 1996. Tropical forest remnants: Ecology, management, and conservation of fragmented communities. Environmental Conservation, 23(1), 90-91.
  • 39. Tipton M., Pandolf K., M. Sawka M., Werner J., Taylor N. 2008. Physiological adaptation to hot and cold environments. In: N. Taylor, H. Groeller, P. McLennan (Eds.), Physiological bases of human performance during work and exercis. Churchill Livingstone, 379-400.
  • 40. Setia, R., Smith, P., Marschner, P., Gottschalk, P., Baldock, J., Verma, V., Setia, D., Smith, J., 2012. Simulation of salinity effects on past, present, and future soil organic carbon stocks. Environmental Science and Technology 46, 1624–1631. https://doi.org/10.1021/ES2027345/SUPPL_FILE/ES2027345_SI_001.PDF
  • 41. Shepherd, K.D., Vanlauwe, B., Gachengo, C.N., Palm, C.A., 2005. Decomposition and mineralization of organic residues predicted using near infrared spectroscopy. Plant and Soil 277, 315–333. https://doi.org/10.1007/S11104-005-7929-Y/METRICS
  • 42. Smith, L.W., Goering, H.K., Waldo, D.R., Gordon, C.H., 1971. In vitro digestion rate of forage cell wall components. Journal of Dairy Science 54, 71–76. https://doi.org/10.3168/JDS.S0022-0302(71)85780-6
  • 43. Sousa, J.R., Cabral, F., Coutinho, J., 2016. Assessment of N Mineralization and N Leaching in Soil Using a New in situ Incubation Method. Communications in Soil Science and Plant Analysis 47, 2157–2167. https://doi.org/10.1080/00103624.2016.1208751
  • 44. Rhodes, C.M.S.L., Stryer, L., Tasker, R., & Freeman, W.H. 1995. Biochemistry.
  • 45. Tian, G., Kang, B., Lambourne, L.J., 1996. Ruminant assay for rapidly estimating plant residue decomposability in the field.
  • 46. Tilley, J.M.A., Terry, R.A., 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104–111. https://doi.org/10.1111/J.1365-2494.1963.TB00335.X
  • 47. Tingyu, Z., Yang, X., Qingyang, H., Chen, X., You, L., 2022. Forest litter decomposition: research progress and prospect. Chinese Agricultural Science Bulletin 38, 44. https://doi.org/10.11924/J.ISSN.1000-6850.CASB2021-1133
  • 48. Torres, P.A., Abril, A.B., Bucher, E.H., 2005. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology and Biochemistry 37, 4954. https://doi.org/10.1016/J.SOILBIO.2004.04.042
  • 49. Tscherning, K., Barrios, E., Lascano, C., Peters, M., Schultze-Kraft, R., 2005. Effects of sample post harvest treatment on aerobic decomposition and anaerobic in-vitro digestion of tropical legumes with contrasting quality. Plant and Soil 269, 159–170. https://doi.org/10.1007/S11104-004-0398-X/METRICS
  • 50. Vaieretti, M.V., Harguindeguy, N.P., Gurvich, D.E., Cingolani, A.M., Cabido, M., 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant and Soil 278, 223–234. https://doi.org/10.1007/S11104-005-8432-1/METRICS
  • 51. Wardle, D.A., Bonner, K.I., Barker, G.M., 2002. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology 16, 585–595. https://doi.org/10.1046/J.1365-2435.2002.00659.X
  • 52. Wienhold, B.J., Varvel, G.E., Wilhelm, W.W., 2009. Container and installation time effects on soil moisture, temperature, and inorganic nitrogen retention for an in situ nitrogen mineralization method. Communications in Soil Science and Plant Analysis 40, 2044–2057. https://doi.org/10.1080/00103620902960575
  • 53. Wright, D.A., Welbourn, P., 2002. Environmental Toxicology. https://doi.org/10.1017/CBO9780511805998
  • 54. Zhang, D., Hui, D., Luo, Y., Zhou, G., 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1, 85–93. https://doi.org/10.1093/JPE/RTN002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ff6ee00-0025-4e52-b9ec-68707bdab5fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.