PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified Hot Distortion Test to Investigate the Effect of the Inorganic Binder on the High-Temperature Behaviour of Physically Hardened Moulding Sands

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is an attempt to determine by Hot Distortion Test (HDT) the impact of physical methods of hardening inorganic binders in the moulding sands on phenomena caused by influence of thermal energy from heating elements with a temperature of 900°C +/- 10°C. Medium silica sand-based moulding mixtures were densified and then hardened using two physical methods: microwave heating at a frequency of 2.45 GHz or classical drying at a temperature of 110°C. Sodium silicate bonded sand (SSBS) with five unmodified kinds of hydrated sodium silicates subjected to two different types of hardening method were assessed in terms of their behaviour in high temperature. Thermal behaviour by means of deformation measurement was carried out with a modified Hot Distortion Test (mHDT). Due to this advanced, but unstable by appropriate standards Hot Distortion Test gives an opportunity to measure thermoplastic deformations (L) in moulding sands in many aspects, such as time of annealing. Research carried out in this way exposed differences between inorganic binders with molar module ranging from 3.4 to 2.0. It was established that deformations under the influence of high temperature last the longest in SSBS containing binders with molar module ranging from 3.4 to 2.9. Similarly, for these types of moulding sands the method of hardening the binder is found to be essential for increasing/decreasing the rate of thermoplastic deformations during the annealing of samples. The samples of SSBS made with binders with molar module from 2.5 to 2.0 are found to be excessively susceptible to thermoplastic deformation as a result of heating them in high environmental temperature presence.
Rocznik
Strony
45--50
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
Bibliografia
  • [1] Liu, F.C., Fan, Z.T., Liu, X., Huang, Y. & Jiang, P. (2016). Effect of surface coating strengthening on humidity resistance of sodium silicate bonded sand cured by microwave heating. Materials and Manufacturing Processes. 31(12), 1639-1642.
  • [2] Stachowicz, M., Granat, K. & Pałyga, Ł. (2016). The effect of wetting agent on the parameters of dry moulding silica sands bonded with sodium water glass. Transactions of the Foundry Research Institute. 56(1), 43-55.
  • [3] Izdebska-Szanda, I., Kamińska, J., Angrecki, M., Palma, A. & Madej W. (2016). An innovative method for the dehydration hardening of modified inorganic binders. Archives of Metallurgy and Materials. 61(4), 2097-2102.
  • [4] Fedoryszyn, A., Dańko, J., Dańko, R., Asłanowicz, M., Fulko, T. & Ościłowski, A. (2013). Characteristic of Core Manufacturing Process with Use of Sand, Bonded by Ecological Friendly Nonorganic Binders. Archives of Foundry Engineering. 13(3), 19-24.
  • [5] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
  • [6] Liu, F., Fan, Z., Liu, X., Wang, H. & He, J. (2014). Research on humidity resistance of sodium silicate sand hardened by twice microwave heating process. Materials and Manufacturing Processes. 29(2), 184-187.
  • [7] Stachowicz, M. & Granat, K. (2016). Influence of wet activation of used inorganic binder on cyclically refreshed water glass moulding sands hardened by microwaves. China Foundry. 13(6), 427-432.
  • [8] Zych, J. & Mocek, J. (2002). Erosion phenomenon in the moulds prepared from chemical bonded sand mould. Archives of Foundry. 2(3), 155-162 (in Polish).
  • [9] Wildhirt, E., Jakubski, J., Sapińska, M. & Sitko, S. (2017). Impact of penetration depth of protective coating on thermal deformation of masses determined by the hot distortion parameter. Prace Instytutu Odlewnictwa / Transactions of the Foundry Research Institute. 56(1), 51-57.
  • [10] Ramrattan, S. (2016). Non-standard tests for process control in chemically bonded sands. China Foundry. 13(1), 59-66.
  • [11] Multiserw-Morek DMA Hot-Distortion bonded sands tester for Wroclaw University of Technology– instruction manual 2016/2017.
  • [12] Fox, J.T., Cannon, F.S., Brown, N.R. Huang, H. & Furness, J. (2012). Comparison of a new, green foundry binder with conventional foundry binders. International Journal of Adhesion & Adhesives. 43, 38-45.
  • [13] Ignaszak, Z., Popielarski, P. & Strek, T. (2011). Estimation of coupled thermo-physical and thermo mechanical properties of porous ceramic material thermolabile using Hot Distortion Plus© test. Defect and Diffusion Forum. 312-315, 764-769.
  • [14] Ignaszak, Z. (2010). Towards optimization of stress simulation in real-mold casting systems. Archives of Foundry Engineering. 76(4), 69-76.
  • [15] Mocek, J., Zych, J. & Chojecki, A. (2004). Study of erosion phenomena in sand moulds poured with cast iron. International Journal of Cast Metals Research. 17(1), 47-50.
  • [16] Jakubski, J. & Dobosz, S.M. (2007). The thermal deformation of core and moulding sands according to the hot distortion parameter investigations. Archives of Metallurgy and Materials. 52(3), 421-427.
  • [17] Versatile Equipments Pvt. Ltd. Hot Distortion Tester http://sandtesting.com/product/hot-distortion-tester/ (visit date 28.12.2017).
  • [18] Morgan, D. & Fashman, E. W. (1975). The BCIRA Hot Distortion Tester for quality in production of chemically bonded sands. AFS Transaction. 75(91), 73-80.
  • [19] Kracek, F. C. (1930). The System Sodium Oxide-Silica. The Journal of Physical Chemistry. 34(7), 1583-1598.
  • [20] Ryś, M. (2007). Investigation of Thermodynamic Properties of Alkali Metals in Oxide Systems Relevant to Coal Slags. Unpublished engineering thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany.
  • [21] Stachowicz, M., Paduchowicz, P. & Granat, K. (2017). Impact of density degree and grade of inorganic binder on behaviour of moulding sand at high temperature. Journal of Casting and Materials Engineering. 1(3), 64-69.
  • [22] Zych J. (2005). Role of compaction in the casting mould technology based on moulding sands containing water-glass or chemical binding agents. Przegląd Odlewnictwa. 55(2), 88-97 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fee5fdc-6df7-4307-b827-e72da7756202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.