PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Numerical Study of the Influence of Cone Angle of the Breakout Anchor Head on the Crack Trajectory of the Medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anchors of various designs are crucial, especially in mining and underground construction, where they stabilise the excavation and prevent the movement of rocks. They make it possible to control the direction of cracking during explosions, limit the dispersion of rock material and minimise damage from vibrations. The use of anchors increases the safety and efficiency of work in difficult geological conditions. The authors propose the use of modified anchor construction for the detachment of rock lumps. The paper presents the results of a numerical analysis carried out using the finite element method (FEM) on the effect of the angle of the anchor conical head of a new breakout design on the formation of the detachment crack trajectory influencing the range and, consequently, the volume of detached rock output. The analysis was carried out with a view to explaining the mechanism of separation of lumps of rock by the anchor treated as a mining tool.
Twórcy
  • Lublin University of Technology, ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
autor
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Department of Technical Informatics, Lublin University of Technology, 20-618 Lublin, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Bokor B., Tóth M., Sharma A. Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates. Fibers. 2018; 6(4): 93.
  • 2. Eligehausen R., Mallée R., Silva J.F. Anchorage in concrete construction. Berlin: Ernst; 2006; 378.
  • 3. Tóth M., Bokor B., Sharma A. Anchorage in steel fiber reinforced concrete – concept, experimental evidence and design recommendations for concreto cone and concrete edge breakout failure modes. Engineering Structures. 2019; 181: 60–75.
  • 4. Jonak J., Karpiński R., Wójcik A. Numerical analysis of undercut anchor effect on rock. J Phys: Conf Ser. 2021; 2130(1): 012011
  • 5. Jonak J., Karpiński R., Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser. 2021; 2130(1): 012012.
  • 6. Jonak J., Karpiński R., Wójcik A., Siegmund M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials. 2021; 14(8): 1841.
  • 7. Jonak J., Karpiński R., Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials. 2021; 14(9): 2371.
  • 8. Jonak J., Siegmund M., Karpiński R., Wójcik A. Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials. 2020; 13(6): 1332.
  • 9. Wysmulski P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Composite Structures. 2022; 301: 116184.
  • 10. Falkowicz K. Numerical Investigations of Perforated CFRP Z-Cross-Section Profiles, under Axial Compression. Materials. 2022; 15(19): 6874.
  • 11. Rogala M., Gajewski J., Gawdzińska K. Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. Composite Structures. 2022; 299: 116102.
  • 12. Szabelski J., Karpiński R., Machrowska A. Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials. 2022; 15(3): 721.
  • 13. Rogala M. Neural Networks in Crashworthiness Analysis of Thin-Walled Profile with Foam Filling. Adv Sci Technol Res J. 2020; 14(3): 93–9.
  • 14. Gajewski J., Golewski P., Sadowski T. The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test. Materials. 2021; 14(2): 419.
  • 15. Jonak J., Karpiński R., Wójcik A., Siegmund M. Numerical Investigation of the Formation of a Failure Cone during the Pullout of an Undercutting Anchor. Materials. 2023; 16(5): 2010.
  • 16. Falkowicz K. Stability and Failure of Thin-Walled Composite Plate Elements with Asymmetric Configurations. Materials. 2024; 17(9): 1943.
  • 17. Rogala M., Tuchowski W., Czarnecka-Komorowska D., Gawdzińska K. Analysis and Assessment of Aluminum and Aluminum-Ceramic Foams Structure. Adv Sci Technol Res J. 2022; 16(4): 287–97.
  • 18. Krauze K., Mucha K., Wydro T., Pieczora E. Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs. Energies. 2021; 14(12): 3696.
  • 19. Biały W. Assessment of the technical state of mining machinery and devices with the use of diagnostic methods. Production Engineering Archives. 2024; 30(2): 266–72.
  • 20. Kotwica K., Stopka G., Wieczorek A.N., Kalita M., Bałaga D., Siegmund M. Development of Longwall Shearers’ Haulage Systems as an Alternative to the Eicotrack System Used Nowadays. Energies. 2023; 16(3): 1402.
  • 21. Waloski R., Korzeniowski W., Bołoz Ł., Rączka W. Identification of Rock Mass Critical Discontinuities While Borehole Drilling. Energies. 2021; 14(10): 2748.
  • 22. HILTI. Technisches Handbuch der Befestigungstechnik für Hoch- und Ingenieurbau. Ausgabe; HILTI: Schaan, Liechtenstein, 2016.
  • 23. Siegmund M., Kalita M., Bałaga D., Kaczmarczyk K., Jonak J. Testing the rocks loosening process by undercutting anchors. Studia Geotechnica et Mechanica. 2020; 42(3): 276–90.
  • 24. Al-Ta A.S., Mohammed A. Tensile Strength of Short Headed Anchors Embedded in Steel Fibrous Con- crete. (AREJ). 2010; 18(5): 35–49.
  • 25. Albadran S.Q. Performance of Cast-in Anchors in Early Age Concrete. Swinburne University of Tech- nology; 2020.
  • 26. Bokor B., Sharma A., Hofmann J. Experimental in- vestigations on concrete cone failure of rectangular and non-rectangular anchor groups. Engineering Structures. 2019; 188: 202–17.
  • 27. Cajka R., Marcalikova Z., Bilek V., Sucharda O. Numerical Modeling and Analysis of Concrete Slabs in Interaction with Subsoil. Sustainability. 2020; 12(23): 9868.
  • 28. Cusatis G., Di Luzio G., Rota M. Simulation of headed anchor failure. In: Computational Modeling of Concrete Structures (Proc, EURO-C 2003 Conference), St Johann im Pongau, Austria. 2003; 683–8.
  • 29. Benedetti L., Cervera M., Chiumenti M. High-fidelity prediction of crack formation in 2D and 3D pullout tests. Computers & Structures. 2016; 172: 93–109.
  • 30. Brincker R., Ulfkjær J.P., Adamsen P., Langvad L., Toft R. Analytical model for hook anchor pull-out. In: Proceedings of the International Symposium on Anchors in Theory and Practice: Salzburg, Austria, 9-10 october 1995. CRC Press/Balkema; 1995; 3–15.
  • 31. Gontarz J., Podgórski J., Siegmund M. Comparison of crack propagation analyses in a pull-out test. In Lublin, Poland; 2018 [cited 2022 Jan 20]. p. 130011. Available from: http://aip.scitation.org/ doi/abs/10.1063/1.5019141
  • 32. Hariyadi, Munemoto S., Sonoda Y. Experimental Analysis of Anchor Bolt in Concrete under the Pull-Out Loading. Procedia Engineering. 2017; 171: 926–33.
  • 33. Chen Z. Analyzing the failure mechanisms and developing strength prediction models for concreto expansion and screw anchors in tension. Washington State University; 2018.
  • 34. Jonak J., Karpiński R., Siegmund M., Wójcik A., Jonak K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials. 2020; 13(20): 4657.
  • 35. Al-Yousuf A., Pokharel T., Lee J., Gad E., Abdouka K., Sanjayan J. Performance of cast-in anchors in early age concrete with supplementary cementitious materials. Mater Struct. 2023; 56(1): 2.
  • 36. Karmokar T., Mohyeddin A., Lee J., Paraskeva T. Concrete cone failure of single cast-in anchors under tensile loading – A literature review. Engineering Structures. 2021; 243: 112615.
  • 37. Di Nunzio G., Muciaccia G. Cast-in-place fasteners under tensile loading: A critical review. Structures. 2022; 41: 1532–45.
  • 38. Bao Q.T., Lee K., An H., Lee D.H., Shin J. Effective prediction finite element model of pull-out capacity for cast-in-place anchor in high strain rate effects. Sci Rep. 2023; 13(1): 18070.
  • 39. Meloni D., De Nicolo B., Valdes M. Finite Element Model of the Pull-Out Test for Concrete Strength Evaluation. In Cagliari, Sardinia, Italy; [cited 2024 May 17]. p. 167. Available from: http://www.ctre- sources.info/ccp/paper.html?id=7500
  • 40. Jeon S., Ju M., Park J., Choi H., Park K. Prediction of concrete anchor pull-out failure using cohesive zone modeling. Construction and Building Materials. 2023 Jun;383:130993.
  • 41. Jonak J, Karpiński R, Wójcik A, Siegmund M. The Effect of Undercut Anchor Diameter on the Rock Failure Cone Area in Pullout Tests. Adv Sci Technol Res J. 2022; 16(5): 261–70.
  • 42. Chahrour A.H., Ohtsu M. Analysis of anchor bolt pullout tests by a two-domain boundary element method. Materials and Structures. 1995; 28(4): 201–9.
  • 43. Wysmulski P. Analysis of the Effect of an Open Hole on the Buckling of a Compressed Composite Plate. Materials. 2024; 17(5): 1081.
  • 44. Wysmulski P., Mieczkowski G. Influence of Size of Open Hole on Stability of Compressed Plate Made of Carbon Fiber Reinforced Polymer. Adv Sci Technol Res J. 2024; 18(2): 238–47.
  • 45. Falkowicz K., Kuciej M., Świech Ł. Temperature Effect on Buckling Properties of Thin-Walled Composite Profile Subjected to Axial Compression. Adv Sci Technol Res J. 2024; 18(3): 305–13.
  • 46. Chessa J., Smolinski P., Belytschko T. The extended finite element method (XFEM) for solidification problems. Numerical Meth Engineering. 2002; 53(8): 1959–77.
  • 47. Belytschko T., Black T. Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering. 1999; 45(5): 601–20.
  • 48. Wysmulski P. Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole. Adv Sci Technol Res J [Internet]. 2023;17(4). Available from: http://www. astrj.com/Numerical-and-Experimental-Study-of-Crack-Propagation-in-the-Tensile-CompositePlate,169970,0,2.html
  • 49. Pathak H., Singh A., Singh I.V. Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences. 2013; 76: 112–31.
  • 50. Lecampion B. An extended finite element method for hydraulic fracture problems. Commun Numer Meth Engng. 2009; 25(2): 121–33.
  • 51. Areias P.M.A., Belytschko T. Non‐linear analysis of shells with arbitrary evolving cracks using XFEM. Numerical Meth Engineering. 2005; 62(3): 384–415.
  • 52. Backers T., Stephansson O., Rybacki E. Rock fracture toughness testing in Mode II—punch-through shear test. International Journal of Rock Mechanics and Mining Sciences. 2002; 39(6): 755–69.
  • 53. Bahrami B., Nejati M., Ayatollahi M.R., Driesner T. Theory and experiment on true mode II fracturing of rocks. Engineering Fracture Mechanics. 2020; 240: 107314.
  • 54. Wei M.D., Dai F., Xu N.W., Liu Y., Zhao T. Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Engineering Fracture Mechanics. 2017; 186: 21–38.
  • 55. Emami Meybodi E., Hussain S.K., Fatehi Marji M., Rasouli V. Application of machine learning models for predicting rock fracture toughness mode-I and mode-II. Journal of Mining and Environment. 2022; 13(2): 465–80.
  • 56. Falkowicz K., Kulisz M. Prediction of Buckling Behaviour of Composite Plate Element Using Artificial Neural Networks. Adv Sci Technol Res J. 2024; 18(1): 231–43.
  • 57. Jonak J., Karpiński R., Wójcik A., Siegmund M., Kalita M. Determining the Effect of Rock Strength Parameters on the Breakout Area Utilizing the New Design of the Undercut/Breakout Anchor. Materials. 2022; 15(3): 851.
  • 58. Fuchs W., Eligehausen R., Breen J.E. Concrete capacity design (CCD) approach for fastening to concrete. Structural Journal. 1995; 92(1): 73–94.
  • 59. Jonak J., Karpiński R., Siegmund M., Machrowska A., Prostański D. Experimental Verification of Standard Recommendations for Estimating the Load-carrying Capacity of Undercut Anchors in Rock Material. Advances in Science and Technology Research Journal [Internet]. 2021 Jan 11; Available from:http://www.astrj.com/Experimental-Verification-of-Standard-Recommendations-for-Estimating-the- Load-carrying,132279,0,2.html
  • 60. Walter H., Baillet L., Brunet M. Contact analysis for the modelling of anchors in concrete structures. WIT Transactions on Engineering Sciences. 1997; 14.
  • 61. Gontarz J., Podgórski J., Jonak J., Kalita M., Siegmund M. Comparison Between Numerical Analysis and Actual Results for a Pull-Out Test. [cited 2021 Mar 30]; Available from: http://et.ippt.pan.pl/index. php/et/article/view/1005
  • 62. Jonak J., Karpiński R., Wójcik A. Influence of Anchor Depth and Friction Coefficient Between Anchor and Rock on the Trajectory of Rock Masses Detachment. Adv Sci Technol Res J. 2023 Aug 16; 17(4): 290–8.
  • 63. Wysmulski P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Composite Structures. 2023 Feb; 305: 116446.
  • 64. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures. 2023; 305: 116474.
  • 65. Jonak J., Karpiński R., Wójcik A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials. 2021;14(14): 3880.
  • 66. Furche J., Eligehausen R. Lateral blow-out failure of headed studs near a free edge. 1991 [cited 2021 Feb 22]; Available from: http://elib.uni-stuttgart.de/ handle/11682/449
  • 67. Wu L.Z., Shao G.Q., Huang R.Q., He Q. Overhanging Rock: Theoretical, Physical and Numerical Modeling. Rock Mech Rock Eng. 2018; 51(11): 3585–97.
  • 68. Huang R.Q., Wu L.Z., He Q., Li J.H. Stress Intensity Factor Analysis and the Stability of Overhanging Rock. Rock Mech Rock Eng. 2017; 50(8): 2135–42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9feaec05-50cc-43ca-a03a-857dead637c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.